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ABSTRACT

Many modern systems are so large that no one truly understands how they work. It is well known in the
engineering community that architectural patterns (including hierarchies, modules, and abstraction layers)
should be used in design because they play an important role in controlling complexity. These patterns make
a system easier to evolve and keep its separate portions within the bounds of human understanding so that
distributed teams can operate independently while jointly fashioning a coherent whole.

This study set out to measure the link between architectural complexity (the complexity that arises within a
system due to a lack or breakdown of hierarchy or modularity) and a variety of costs incurred by a
development organization. A study was conducted within a successful software firm. Measures of
architectural complexity were taken from eight versions of their product using techniques recently developed
by MacCormack, Baldwin, and Rusnak. Significant cost drivers including defect density, developer
productivity, and staff turnover were measured as well. The link between cost and complexity was explored
using a variety of statistical techniques.

Within this research setting, we found that differences in architectural complexity could account for 50%
drops in productivity, three-fold increases in defect density, and order-of-magnitude increases in staff
turnover. Using the techniques developed in this thesis, it should be possible for firms to estimate the
financial cost of their complexity by assigning a monetary value to the decreased productivity, increased
defect density, and increased turnover it causes. As a result, it should be possible for firms to more accurately
estimate the potential dollar-value of refactoring efforts aimed at improving architecture.
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2 Motivation

Designers of today's large systems struggle with the fact that those systems are both complicated and complex.

Modern systems are complicated in the sense that they have far exceeded the bounds of human understanding.

[1-3] The collective knowledge required to complete a design is much broader than could be internalized by a

single person over the course of a lifetime. Hundreds or thousands of engineers now make intellectual

contributions to the design of single artifacts. Secondly, modern systems are complex. One of the defining

features of complex systems is that they are often interconnected in ways that enable unanticipated behavior

to emerge as a result of unexpected interactions between system components. Because of this emergent

behavior, the whole often does not behave in a manner that logically follows from the independent functioning

of its parts.

System architects often take great pains to keep complexity under control because overly complex systems

carry a variety of costs and risks. They are more expensive to design, harder to maintain, and can be more

prone to failure. System complexity clearly adds value as well, however. Over the last century, increasingly

complex machines, services, processes, and infrastructures have done old jobs better and provided new

capabilities that were previously unimaginable. While complexity can be costly, a higher-complexity system

may very well be worth the price. [4] A natural tradeoff therefore exists between enabling valuable

functionality or performance characteristics and keeping complexity under control.

Complexity across systems, and the complexity of different regions within the same system, can vary widely.

In the battle to constrain and channel the behavior of a large system so that complexity is appropriately

managed, a principal weapon in the designer's arsenal is the architecturalpattern. Architects striving to make

large systems tractable make them hierarchical, compose them of independent modules, separate them into

conceptual layers, and reuse parts. These types of architectural patterns endow systems with inherently

beneficial properties [5], and also "addres[s] basic human limitations in dealing with complexity." [6] Design is

not easy or straightforward, however. Weighing the costs and benefits of alternative architectural choices is

difficult. Designers must choose between multiple competing ways to decompose a system into hierarchical
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structures and competing criteria for determining which functionality should be clustered in each module. [7]

They must determine how big each module should be and how interfaces between them should be structured.

In addition, hierarchy and modularity are not free - they impose their own costs, may impact performance,

and can limit the scope of future decision-making. A designer must trade performance requirements against

complexity controlling features across the system being designed. These choices will have a profound impact

on how complicated and complex different portions of a system will be. As a result, a system may have

regions bearing widely varying costs and risks.

Unfortunately, there has been is little quantitative work to help managers and designers understand the cost

of complexity in an architecture. Because of this, it is hard for them to place a value on hierarchy and

modularity in a system design. It is hard for them to understand the burden that a company is forced to

shoulder when architectural patterns degrade over the life of a long-lived system. Finally, it is hard for them

to objectively weigh the value of refactoring efforts aimed at asserting (or reasserting) various principles of

large-scale system design.

The purpose of the study described in this thesis is to begin to fill this gap. In this report, we describe

research that was done to measure costs incurred by a successful commercial software development firm

during the ongoing development of a mature software product. Tens of thousands of individual software

source-code files were assigned complexity scores related to their network positions within the software's

architecture. A variety of costs were measured over a eight back-to-back development windows. These

included the number of defects in complex files, differences in the productivity of engineers working with

complex files, and differences in staff turnover among engineers working in complex files. By presenting a

well-rounded consideration of the costs of complexity in different regions of a mature technical architecture,

we hope to provide insights that might allow development organizations to weigh important tradeoffs in a

structured manner. Complexity is neither good nor bad. It provides value, but is also costly. An ability to

measure the multidimensional costs of complexity could help to inform important decisions made during the

design and maintenance of today's large software systems.
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Over the course of this discussion, we will focus on a specific type of complexity: architectural complexity.

Regions within a system that are more architecturaly complex have fewer hierarchical and modular structures

governing the relationships between system elements. Hierarchy and modularity are well known patterns

employed by man and nature to keep complexity under control even as systems grow. Technical architectures

in which these patterns are judiciously applied often have a variety of evolutionary advantages. They tend to

be more stable, of higher quality, safer, and benefit from other "ilities" over the course of their lifecycles.

During this research, we operationalize the concept of architectural complexity by using network algorithms

and metrics devised by MacCormack, Baldwin, and Rusnak [8, 9] that classify system elements based on their

level of coupling (both direct and indirect) with the rest of the system. Because these procedures are designed

to identify regions of an architecture containing large system spanning cycles of dependencies, they can

identify regions in which hierarchical structure and modular isolation are relatively absent. These high-

complexity regions may exist because they were originally designed to be high coupled, or because of a

subsequent degradation of complexity controlling patterns.

A software system was chosen for analysis because software has several unique properties that enable this

study. Firstly, software is an artifact that embodies pure function unencumbered by the burden of physical

form. Software development firms engage in design but have no need for manufacturing or assembly. By

observing a large software firm, we are measuring a design process unencumbered by many economic

constraints, such as the large fixed costs found in an aerospace plant, and with few serious constraints

imposed by physics. By looking at a software firm, we are in some senses isolating the impact of complexity

on the cost of maintaining a design. Secondly, software is grown, evolved, and reconfigured more rapidly

than other systems precisely because of this relative dearth of economic and physical constraints. Empirical

observations of the same phenomena can be made over shorter time-scales. Thirdly, successful software

systems have the property that they are extremely long-lived. MacCormack tells us "mature products often

contain significant amounts of code from their earliest versions, even if major evolutions in design have since

been made." He tells us that as they grow and take on new functionality they "bare the consequences of

decisions made long ago." [9] This continuity between successive versions supports longitudinal analysis.
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Finally, the architecture of a software system can be automatically extracted from its source code, and

important cost-related information can be assembled from version control systems, bug-tracking systems, and

other databases commonly used in software development, thus making it feasible to explore the cost of

complexity in very large systems.

In this study, we found that differences in architectural complexity accounted for differences in developer

productivity of 50%, three-fold differences in defect density, and order-of-magnitude differences in staff

turnover. Costs of this magnitude make a strong case for the benefits of design patterns that manage

complexity and the value of system redesign efforts aimed at imposing (or re-imposing) those patterns.
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2.1 Research Questions

This study aims to address one overarching question:

* What costs does architectural complexity within a software system impose on the design

organization that develops and maintains it?

There are several costs that architectural complexity within a design might impose on the development

organization. We choose to focus on a subset with a direct and measurable impact on payroll - the principal

expenditure within many software and engineering design firms:

" Quality: Do software components in more architecturally complex regions of a codebase

experience more defects? Every hour that an engineer spends correcting a defect is pure waste. It

is an activity that the organization must perform, but derives no value from. Quality also impacts

customers, and therefore impacts firm reputation, adoption, and market-share.

* Productivity: Are engineers who work in software components with higher levels of

architectural complexity less productive? System components that are harder to work with waste

designers' time. If designers are twice as productive working in components where architectural

complexity is low, we can say that high complexity consumes half of that individual's effort.

" Human Capital: Is there a higher rate of staff turnover among engineers working in software

components with higher levels of architectural complexity? If complexity is related to higher

turnover, we can say that the cost of that complexity is the cost of recruiting and training

replacements. Furthermore, if complexity is a causal factor in staff turnover, then it clearly must play

some role in harming morale as well.
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3 Literature Review

An interesting and diverse body of work has looked at many of the issues around the relationship between

complexity, architecture and costs. In this section, we review pertinent literature on complexity in systems,

and more specifically on software complexity. We explore the dangers that complexity in a technical system

can pose. We then turn to the role of system architecture and the means by which common architectural

patterns (such as hierarchy, modularity, and abstraction layering) in a design keep complexity under control.

We look at how these canonical architectural patterns can be measured and reasoned about by exploring

high-level network representations of real systems. We then look at past work that has explored software

designs using network-analysis and review the history of complexity measurement in software. We conclude

by looking at the problems an organization faces when trying to decide whether (or how) to reduce

complexity within an existing system's architecture.

3.1 Complexity in Systems

Two things that make today's systems hard to design and maintain are that they are complicated and they are

complex. By complicated, we mean that they are so large or detailed that no single individual can understand how

they work. By complex, we often mean that interactions between parts can result in strange behavior that is

hard to anticipate and which can threaten safe and reliable operation.1 This was not always the case. During

the time period since the beginning of the Industrial Revolution until the advent of complex systems in the

early twentieth century, those individuals running design and manufacturing organizations were capable of

understanding their processes and products. During this "epoch of great inventions and artifacts" [10] large

hierarchically structured organizations grew by taking advantage of differentiated labor and interchangeable

parts. [11-13] The design process, however, remained in the hands of small groups of people. Once a

1 This distinction between complexity and complicatedness is used by Crawley [1], while many others use the
word complexity to denote both meanings. In this report, we will sometimes distinguish between the two
where the distinction is appropriate, but will also use the term complexity to refer to both psychological
aspects and properties inherent to a system elsewhere.
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problem was understood, managers coped with the demands of accomplishing a large task by dividing it until

each sub-task was small enough for a person or team to handle. Hierarchical control, division of task, and

assembly of standard parts led from Adam Smith [13] to Taylor's system of Scientific Management [14],

Ford's assembly line, and Edison's electrification at the turn of the twentieth century. Then something began

to change. Systems such as the telephone network [15] and automated gunfire control systems [16] seemed

to increasingly resist reductionist approaches. The process of designing and operating modern machines

began to change in fundamental ways. [10]

The technical knowledge required to complete a modern system's design is much larger than could be learned

by a single person over the course of a lifetime. These systems have far exceeded the bounds of human

understanding. [1-3] Complicated systems sometimes consist of billions of parts connected in countless ways.

Hundreds or thousands of engineers make intellectual contributions to the design of these artifacts. As a

result, it is no longer only the organization, the product, and the production process that must be

decomposed. The designprocess itself must be subdivided and allocated to large groups of people with

different skills. Those charged with designing and evolving a complicated system must grope for means of

managing the structure ofthe designprocess (the layout of teams and the communication channels between them)

even though everyone involved is at least partially blind. A recent British Royal Academy of Engineering

report says that "[o]n a large software project one is lucky if one person in 50 has anything resembling an

overall understanding of the conceptual structure of the project, and divinely blessed if that person has the

ability to explain it in lay terms." [17] It is often now impossible for a group of engineers to really know if a

flaw in the decomposition of the design organization will lead them to miss opportunities to create a good

technical structure, or if the collective "unknown-unknowns" will wreak havoc on the end result. [5] Further

compounding this issue is the fact that today's large system designs are often created by teams that span

firms, institutions, and continents. Somehow, mysteriously, many of our complex systems work even though

no one can truly claim to know how or why.
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In the past hundred years our systems also became complex. One of the defining features of complex systems

is that of emergent behavior - the idea that the whole often does not behave in a manner that logically follows

from the independent functioning of its parts. The need to avoid emergent behavior (to prevent defects or

disaster) or the desire to find and exploit it requires modern organizations to employ strategies, processes, and

structures beyond hierarchical reductionism. Some properties that we require in our complex systems - such

as safety - cannot be obtained by assigning responsibility to a single group because they are systemic in

nature. Accidents often result from unanticipated interactions between parts, not from problems identifiable

within individual components. [18, 19]

3.2 Complexity in Software

The invention of software adds a new twist because it is function unencumbered by the burden of form.

During the industrial revolution, production was distributed but design was not. In complex electro-mechanical

systems, both the design andproduction were separate things to be decomposed. Now, with the advent of large

software products, design is distributed but the notion of a production process entirely eliminated. There are no

large fixed costs and no serious physical constraints. By examining software evolution and development

activity in a large software firm, we are observing complex design evolution in a strikingly pure form. 2 The

evolutionary forces guiding the development of programming languages and methodologies since the 1970s

have often favored those technologies that allow humans to better manage complexity. Fred Brooks

forcefully makes this point:

2 Software developers continuously encounter semi-routine tasks. They write programs to automate them as
part of their normal workflow. As these programs become more general, they are often shared. The
software industry as a whole responds in a similar manner as it evolves. Whenever a concept becomes
sufficiently well understood that it can be turned into a repeatable process and routinized, a program is
written to perform the task. If a concept is sufficiently abstract, it will become a design pattern used in
existing languages, and might later become a syntactical construct embedded in new languages. There is no
room in software for non-design professionals because non-creative tasks are mechanized as a matter of
course.
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Software entities are more complex for their size than perhaps any other human construct

because no two parts are alike... In this respect, software systems differ profoundly from

computers, buildings, or automobiles, where repeated elements abound... Likewise, a

scaling-up of a software entity is necessarily an increase in the number of different elements.

In most cases, the elements interact with each other in some nonlinear fashion, and the

complexity of the whole increases much more than linearly... Many of the classic problems

of developing software products derive from this essential complexity and its nonlinear

increases with size. From the complexity comes the difficulty of communication among

team members, which leads to product flaws, cost overruns, schedule delays. From the

complexity comes the difficulty of enumerating, much less understanding, all the possible

states of the program, and from that comes the unreliability. From complexity of function

comes the difficulty of invoking function, which makes programs hard to use. From

complexity of structure comes the difficulty of extending programs to new functions without

creating side effects. From complexity of structure come the unvisualized states that

constitute security trapdoors. [20]

Brooks is not alone in his belief in the essential complexity of software. In a paper reviewing the evolution of

the field from its inception until 1997, Shapiro concluded "[flrom the 1960s onward, many of the ailments

plaguing software could be traced to one principal cause - complexity." Shapiro begins his paper with the

assertion that the "fundamental nature of software-Involv[es] basic and poorly understood problem-solving

processes combined with unprecedented and multifaceted complexity", and then proceeds to employ the

word 107 more times. [6] In his review paper, complexity fell into two general categories: "program

complexity" [21] related to of control, size, modularity, information content, and data structures and

"psychological complexity," [22] related to "problem comprehension, translation, and system design." Basili

refined this notion of psychological complexity by saying that complexity is "a measure of the resources

expended by another system while interacting with a piece of software. If the interacting system is people, the

measures are concerned with human efforts to comprehend, to maintain, to change, to test, etc., that
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software." [23]

Shapiro said that as hardware became more capable during the 1970's, program efficiency took a backseat to

complexity management and human understandability as the primary evolutionary force within the field. [6]

Since that time, advocates for many successful software engineering innovations such as stepwise refinement,

information hiding, top-down design, structured design, and object orientation each put their newly-preferred

method forward as a better means of coping with complexity, complicatedness, or both.

3.3 The Importance of Controlling Complexity

System designers must place great importance on controlling complexity during the design process and in

systems once they are operational. When complexity in a design is well managed it makes the design process

proceed more smoothly and makes the resulting system more reliable. Unfortunately, "Complexity in large

scale IT systems remains an area which is insufficiently well understood. The degree of complexity entailed in

achieving a particular objective can be very difficult to estimate at the project outset." [17] Complexity in a

design always has the potential to be problematic. Even when it remains manageable, it causes project delays,

defects and other forms of waste. When we lose control of complexity, project failures can sink firms and

accidents can cause property destruction and loss of life.

3.3.1 Uncontrolled Complexity in Design Projects

Complexity in the design process has led to many of high-profile cost overruns, project failures and

bankruptcies. Lyneis says that "a major reason for continued schedule and budget performance problems is

that while projects are fundamentally complex dynamic systems, most project management concepts and

tools either (1) view a project statically or (2) take a partial, narrow view in order to allow managers to cope

mentally with the complexity. Traditional tools and mental models are inadequate for dealing with the

dynamic complexity of projects." [24] A few notable examples of failed software projects include a multi-

billion dollar attempt to create an FAA air-control system [25] and an automated baggage handling system in

the Denver airport that "mutilated and lost bags." [26]
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Coupled interactions and feedback between quality, productivity, rework, and turnover are often responsible

for success or failure on large projects. A family of empirically validated differential-equation-based project

management models has been created to link and explore these causal influences. [24] Many of these

feedback models have also been designed and calibrated specifically for the purpose of understanding project

and organizational dynamics in software. [27-29] These system dynamics models simulate a variety of

interrelated pathologies that can sink large projects. Quality problems can lead to low productivity because

designers must create workarounds and sometimes build on top of functionality that is eventually reworked

or scrapped. Low productivity leads to project delays, time pressure, and further quality problems. Delays

lead to overtime and overwork, leading to fatigue, mistakes, burnout and turnover. Turnover leads to the

hiring of rookies, whom are both more likely to introduce defects, and less productive than veterans. In

addition, rookies require mentorship, which takes time away from the veterans who would otherwise be

working in the system. Overworked mentors might spend less time helping new employees mature. These

project dynamics models tell us that some projects operate within acceptable thresholds allowing them to

complete in a reasonable manner, while others succumb to these interrelated pathologies. The causal

relationships influencing the evolution of a large program combine to form a system that is highly non-linear

and can be unstable. Seemingly minor policy choices can be the only thing separating a smoothly running

project from a "death march."

Another body of work - built around task structure matrices - explored the strong link between unanticipated

rework and coupling in technical designs. Because the link between task dependencies in a development

project and coupling in a design is very strong, rework on a design project is highly related to complexity in a

product's architecture. This body of work tells us that dependencies that are unmanaged, unanticipated,

cyclical, or architecture spanning can result in project overruns, organizational dysfunction; and failure to

converge on a workable design. [5, 30-36]
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3.3.2 Uncontrolled Complexity in Operational Systems

Complexity has been responsible for a variety of high-profile system failures and accidents that have lead to

loss of life. [18, 37] Since the advent of complicated systems, we have been forced make ourselves content

with the fact that design processes must sometimes be distributed and self-organizing [38-41]. Complexity-

based methods are used in system analysis. [42-49] Successful designs must also be structured in such a way

that they can evolve over time in response to learning, new requirements, and new opportunities. [48, 50, 51]

Designers still have little desire to be surprised by the behavior of large systems that are in operation - when

this happens, the results are generally undesirable.

A major goal of a designer is to manage structural complexity in a design so as to keep the dynamic and emergent

complexity of a system in operation well understood and controlled.3 This is because accidents are often

caused by unanticipated interactions between parts. [18, 19] For example, the Tacoma Narrows bridge

collapse in 1940 was caused by harmonic properties of the bridge as a whole. This scenario was hardly

considered by its designers. More recently, a cascading power failure in India affected over a half billion

people in July of 2012 [54]. While the exact cause is presently unclear, what is evident is that the power

distribution network was structured in such a way that a positive feedback loop could amplify a local problem

and cripple an entire country. These types of failures are pernicious because they result from the structure of

the system as a whole that results in insufficiently constrained behavior. When emergent properties of the

system as a whole are unanticipated, they often cause emergendes.

3 The system architecture community focuses more on structural complexity while the system dynamics
community [37, 52, 53] focuses more on behavioral complexity (or dynamic complexity), both agree that the
structure of a system is a key driver of its long term behavior and dynamic characteristics. Both communities
view structures and the resulting dynamic interactions as directly responsible for how a system performs
during periods of stability and how likely various catastrophic events might be.
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3.4 Architecture Controls Complexity

The fact that modern system are so complicated that the design itself must be decomposed and distributed,

and the idea that modem systems are so complex that unexpected behaviors can emerge (often due to

interactions between separately designed components) leads to a new role for a design professional known as

a system architect. The role of this person is to analyze stakeholders, study their needs, and serve as their

representative throughout the design process. The architect must use this information to devise a concept for

a complex system and ensure that when built, it functions appropriately. In 2004, the Massachusetts Institute

of Technology 'ESD Architecture Committee' [55] said that "[m]an-made... systems are intended to have

certain primary functions, plus other properties that we call "ilities:" durability, maintainability, flexibility, and

so on... The primary functions have immediate value while the ilities tend to have life-cycle value....

Complex systems have behaviors and properties that no subset of their elements have... Some of these are

deliberately sought as the product of methodical design activity... While achieving these behaviors, the

designers often accept certain undesirable ... side effects... In addition, systems have unanticipated

behaviors commonly called emergent. Emergent behaviors may turn out to be desirable in retrospect, or they

may be undesirable." The architect must design a system that can function properly, appropriately control

and channel its complexity, and make hard tradeoffs. The architect must identify important system-level

properties that must be managed centrally, decompose the design into manageable chunks, create design rules

[5] and promote design patterns [56] which allow engineers to manage complexity within and between their

subsystem boundaries. Up-front choices that an architect makes constrain the design space, but also reduce

ambiguity and reduce the time that will be required to converge to a workable system if done properly. The

role of the architect is to identify inherent tensions in the space of possible designs that will lead to chaos if

left unmanaged, manage those choices centrally, and leave teams free to innovate independently within the

necessary constraints. Important design rules may seem sub-optimal at the local level. In such cases, the role

of the architect is to represent the global perspective. The architect must also represent the long-term

perspective by carefully considering total lifecycle costs because maintenance costs sometimes exceed the cost
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of development by a ratio of ten to one. [57] Pimmler and Eppinger say "[t]he choice of product architecture

has broad implications for product performance, product change, product variety, and manufacturability."

[58] Brooks says that establishing a common vision around a system plan with "conceptual integrity" is of

utmost importance. [59, 60] Crawley says that of all activities that go on during the creation of a system,

architecture "has some of the greatest impact on eventual success." [1]

The architect must "design the design." [59, 60]Architects decompose a design by allocating similar

functionality to modules with high cohesion, creating controlled interfaces isolating a module's internals from

its external environment, devising shared utilities for common use, making communication protocols clear,

and arranging modules into a hierarchies and layers. The system must be structured in such a way that design

teams can operate independently much of the time, know when coordination is required, and be able to

coordinate effectively when necessary. The overall structure should be set up in such a way that individual

teams evolving separate chunks rarely cause unwanted side-effects elsewhere, designers can recognize threats

when they do occur, and the overall conceptual integrity of the system is maintained. All of this involves a

number of hard choices. The architect must contend with multiple competing ways of decomposing a system

into hierarchical structures [7] and competing criteria for determining which functionality should be clustered

in each module. [58] The architect must also determine how big each module should be and how interfaces

between them should be designed. These choices will have a profound impact on how complex different

portions of a system will be.

Successful architecture process will yield an abstract description of a large system that, if designed and built,

would function appropriately, control complexity, and have the ability to scale and evolve over time. Ulrich

and Eppinger define this as "the scheme by which ... decomposed elements are arranged in chunks." [61]

Ulrich chooses to "define product architecture more precisely as: (1) the arrangement offunctional elements; (2)

the mapping from functional elements to physical components; (3) the specification of the intefaces among interacting

physical components." [62] Crawley defines architecture as the "The embodiment of concept, and the

allocation of physical/informational function to elements of form, and definition of interfaces among the
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elements and with the surrounding context." [1] Moses says that the architecture of a system "is a skeleton

that connects the components of the system. A skeleton does not fully describe the human body or an

engineering system, but it is a necessary and crucial part of the system's description." [63] When analyzing

systems, Moses sees value in creating architectural descriptions emphasizing structural complexity (a description

of parts and their connections). He finds it useful "to study the relationships between certain generic

architectures (e.g., tree structures, layered structures, networks), their structural complexity and the non-

traditional properties of systems, such as flexibility." [63] Ultimately, the high level structural patterns that are

built into a design from its inception will have a profound effect on the evolutionary trajectory and lifetime

cost of a complex system.

3.5 Important Architectural Patterns

Certain well-known patterns are employed by man and nature to keep complexity under control even as

systems grow. These patterns include hierarchy, modularity, and abstraction layering. Technical architectures

in which these patterns are judiciously applied tend to be of higher quality, safer, and benefit from other

"ilities" over the course of their life cycles.

3.5.1 The Benefits of Hierarchy

Formally, the term hierarchy denotes any directed acyclic graph (DAG). While, it may not contain cycles, it

can contain multiple source and sync nodes, and can both diverge and converge. A tree is a very common

type of hierarchy that fans out from a single root (or controller node) and never converges. A layered system

is a different kind of hierarchy. Hierarchies are pervasive organizing patterns in many large real-world

systems because they endow systems with a variety of useful properties. Herbert Simon tells us that

"[h]ierarchy ... is one of the central structural schemes that the architect of complexity uses." [51] In The

Sciences of the Artificial, he says "complex systems might be expected to be constructed in a hierarchy of

levels, or in a boxes-within-boxes form. The basic ideas it that several components in any complex system

will perform particular sub-functions that contribute to the over-all function... To design such a complex
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structure, one powerful technique is to discover viable ways of decomposing it to semi-independent

components corresponding to its many functional parts. The design of each component can then be carried

out with some degree of independence of the design of others, since each will affect the others largely

through its function and independently of the detail of the mechanisms that accomplish the function." [48,

51] Leveson says "a general model of complex systems can be expressed in terms of a hierarchy of levels of

organization, each more complex than the one below, where a level is characterized by having emergent

properties. Emergent properties do not exist at lower levels; they are meaningless in the language appropriate

to those levels... Thus, the operation of the processes at the lower levels of the hierarchy result in a higher

level of complexity... [A]t a given level of complexity, some properties characteristic of that level (emergent

at that level) are irreducible." [19] Simon says that hierarchical systems are commonly found in the natural

world because nearly decomposable hierarchies with stable subsystems (or intermediate forms) enable

evolutionary processes, allowing highly ordered systems to grow, acquire new capabilities, and adapt. Simon

notes that hierarchical patterns in systems manage complexity because they "have a high degree of

redundancy, hence can often be described in economical terms." Hierarchical organization assist designers by

reducing the cognitive burden placed on the human mind when examining a system from any one vantage

point. Hierarchies also facilitate top-down control and the imposition of safety constraints [19, 64]. They are

useful structures for classifying, storing, and searching for information. [65] Finally, the requirement that a

hierarchy contains no cyclic connections reduces the possibility that feedback loops will be formed between

widely separated components. These feedback loops, or cycles, can hindering change [31] or lead to

unintended non-linear dynamic behavior. [53]

3.5.2 The Benefits of Modularity

Modular is a term used to describe architectures composed of distinct modules - semi-autonomous structures

with formal boundaries that separate their internal environment from the outside world. Robust modules

have the property of "homeostasis" - their internal functioning is not easily disrupted by fluctuations in the

external environment. [49] Modular systems contain many independent components, each of which can
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change or evolve separately with minimal impact on each other or on the system as a whole. [66] Modules

hide information in the sense that the use of one only requires a client to understand its interface, not its

complex internals. Modularity was recognized as a critical means of controlling software complexity as early

as the 1960s. [67] In the early 1970s, Wirth proposed a process of "stepwise refinement" for designing

software in a manner that would result in modularized code. [68] Parnas, whose work anticipated object-

orientation, followed up by contributing reasonable advice on what criterion should be used when

decomposing a software design into modules. [69, 70] As computer science developed, increasingly

sophisticated types of modules were invented including an extreme form, known as Object-Orientation,

which combined data-type abstraction and access control. [6, 71, 72] Modularity is similarly important in

physical product design. Ulrich's classic paper contrasted modularity with integrality and discussed multiple

types of modularity including slot modularity, bus modularity, and sectional modularity. He described the

relative advantages of each type and illustrated his case by showing alternative design concepts for a trailer, a

personal computer, and an office desk. [62] Ulrich defined a perfectly modular product as one in which every

internal function is performed by a distinct part. He said "[a]t one extreme, modular products allow each

functional element of the product to be changed independently by changing only the corresponding

component. At the other extreme fully integral products require changes to every component to effect change

in any single functional element. The architecture of a product is therefore closely linked to the ease with

which change to a product can be implemented." Ulrich noted that modular product architectures are more

flexible, adaptable, and manufacturable. Baldwin and Clark tell us why modularity is important in economic

terms. They say "modularity in design - an observable property of design and design processes - dramatically

alters the mechanism by which designs can be changed. A modular design in effect creates a new set of

modular operators, which open up new pathways of development for the design as a whole." [5] When

designers are working inside a modular technical design, they can independently transform modules in six

important ways. Modules in a system can be split, substituted, augmented, excluded, inverted, and ported. Baldwin

and Clark demonstrate through computer simulation how the option to independently modify

subcomponents within a modular system accelerates innovation by creating "real options" in the system's
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design that behave similarly to options in the world of finance. Essentially, driving modularity into an integral

architecture can transform a single large investment into a much more valuable basket of small investments.

Baldwin and Clark tell us that modular designs can "evolve via a decentralized search by many designers for

valuable options," each experiment conducted independently within a bounded span of responsibility and

control. In general, modularity is a useful attribute, but not all systems can be modular. Whitney points out

that many systems cannot achieve the level of modularity often achievable in software and digital systems due

to fundamental power constraints or because multiple types of system-spanning relationships (power,

informational, electrical, physical, force translation, etc.) each suggest alternative modularizations, none of

which are fully satisfactory. [7] Whitney also makes note of the current movement towards integrality in

computer design brought on by the need to dissipate heat in laptops. Furthermore, modularity is not free.

Modular designs contain overhead in the form of "design rules" that add cost to the front-end of a design

process and potential recurring costs in the form of ongoing performance limitations. [5] This may be a

worthwhile investment in software systems with volatile codebases or complicated problem domains. In

systems that are less volatile or complicated, the investment in modularity may not pay off. [73]

3.5.3 The Benefits of Abstraction Layers and Platforms

Layers combine the notion of hierarchy and modularity in a manner that serves to contain complexity and

endow a system with a variety of beneficial properties. Layers in systems provide services to components

above them while relying on services provided by those below. They combine the notion of directionality

found in hierarchies with the notion of information hiding found in modules. Conceptual layers in a design

are sometimes called abstractions. In other contexts, technology layers are called platforms. Although layers are

themselves inflexible, Moses says that layered structures can make an overall system more flexible. [74]

Baldwin and Woodward tell us that platforms form rigid structures in an architecture that create stable

interfaces upon which modules can rapidly evolve. [75] Moses says, "Layered systems are common in large

scale hardware/software systems. For example, a personal computer will have a layer for the microprocessor,

several layers for the operating system including a user interface layer, possible layers for a database system,
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and additional layers for application software." [74] Layering hides information in a stronger manner than

modularity does because it partitions a complex network of components into two distinct regions that may be

considered independently. In addition to hiding details, abstraction layers may embody new higher-level

concepts by aggregating diverse facilities into a useful coherent whole.4 Abstraction layers can also partition

systems by engineering discipline or be responsible for defining the boundaries between disciplines. The

transistor, for instance, creates a useful barrier that allows electrical engineers to study quantum mechanics

while computer engineers can study Boolean logic. Krueger says that the creation of new abstraction layers is

the primary means by which large-scale reuse is achieved in software. [76] Functionality that is repeatedly

found to be useful ends up buried beneath layers of abstract symbols in subsequent generations. Daniel

Jackson says that the creation of conceptual abstractions is central to the design of software:

"Software is built on abstractions. Pick the right ones, and programming will flow naturally

from design; modules will have small and simple interfaces; and new functionality will more

likely fit in without extensive reorganization. Pick the wrong ones, and programming will be

a series of nasty surprises: interfaces will become baroque and clumsy as they are forced to

accommodate unanticipated interactions, and even the simplest of changes will be hard to

make. No amount of refactoring, bar starting again from scratch, can rescue a system built

on flawed concepts. Abstractions matter to users too. Novice users want programs whose

abstractions are simple and easy to understand; experts want abstractions that are robust and

general enough to be combined in new says. When good abstractions are missing from the

design, or erode as the system evolves, the resulting program grows barnacles of complexity.

The user is then forced to master a mass of spurious details, to develop workarounds, and to

accept frequent, inexplicable failures. The core of software development, therefore, is the

4For instance computer operating systems present an abstraction known as the single-threadedprocess - which
serves as a container for all applications running on the computer. Under typical circumstances, this
container allows each program to behave as if it were the only program running on a perfectly deterministic
machine, even though it is continually contending for resources on a machine whose behavior is far from
predictable or repeatable in practice.
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design of abstractions. An abstraction ... is a structure, pure and simple - an idea reduced

to its essential form. [77]
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3.6 Network Representations ofImportant Architectural Patterns

We have created the following figures to depict hierarchy, modularity, and layering as embodied in different

types of directed network graphs. Each network is shown using two representations. Pictures on the left are

traditional network views with letters as nodes and directed arrows as arcs. Pictures on the right are square

matrix views with nodes contained in an ordered list, and arcs represented as dots in the square matrix at

("from node", "to node.") This ordered matrix representation (known as a Design Structure Matrix or DSM)

is widely used in engineering design circles. [30, 78]

Figure 1 and Figure 2 show a hierarchical tree with node L as a root node. Trees are a common type of

hierarchy. Note that in an appropriately sorted DSM, a tree-hierarchy appears as a band starting somewhere

along the middle of the left hand side and moves towards the lower right corner.
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Figure 1: Hierarchical Tree as Network Figure 2: Hierarchical Tree as DSM
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Important note about network notation: For those already familiar with DSMs, it is very

important to note that the conventions used in this report are somewhat different than those

used in much of the existing DSM literature. This is because DSMs originated in the hardware

community, but the software community follows slightly different network drawing

conventions. While the DSMs shown in this report (e.g. Figure 2) follow typical DSM

conventions, the corresponsding "traditional network views" (e.g. Figure 1) have arrows

pointing in the opposite direction of what is typically shown. This arises from the fact that

software callgraphs show arrows pointing from a calling function to one that is called Figure 1 and

Figure 2 could both represent a call from within function L that invokes function J. In this

scenario, function J does useful work and returns the result of that work back to function L. In

electro-mechanical network representations, however, arrows are typically drawn from a provider

J to the reaipient L.

The convention used in this thesis is consistent with the call graph convention that is often used

in the software DSM literature (see MacCormack's conventions [79] for an example) and

different that what is found the hardware DSM literature (see figures 1.3a and 1.3b in Eppinger's

book[78].)

Figure 3: Note about DSM and Network Conventions

Figure 4 and Figure 5 showfour independent tightly coupled modules5. Codependence between nodes within each

module shows up as bidirectional arrows in the network view and symmetry in the DSM. Modules have high

internal cohesion and low external coupling. In an appropriately sorted DSM, modules appear as distinct and

identifiable blocks arranged along the diagonal. (If the nodes in the DSM were sorted differently, these

modules might not be evident.)

s For simplicity, we have not shown links between modules. In order to be one system rather than four separate ones,
these modules should be loosely connected in some way.
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- e

0@ I

~~1eii------

I.~ -

--I. jI
-5. -

Figure 5: Modules as DSM

Figure 6 and
Figure 7 show layers, platforms, or abstractions. As can be seen in the DSM, in some senses this structure is

a combination of hierarchy and modularity. Nodes in a higher layer can directly access nodes in a lower layer,

but connections do not generally skip layers. (Modular access within the same layer is omitted for the sake of

clarity.)
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Figure 6: Layers as Network

JABCIDEIFIGH I J KL

BI
C

El

Hi

LW1

s.-------

e-55.---
eee

ee .
@00 -

_e.5e

- -ee

Figure 7: Layers as DSM

36

i



37



Figure 8 and Figure 9 show a hierarchy ofmodules. This mixed system depicts an organization of components

that characterizes many complex systems. It incorporates some of the principles of large-scale system design

articulated in different ways by Simon, Parnas, and others. Herbert Simon describes a nearly decomposable

hierarchy of "intermediate forms." [48, 51] Simon says that natural and artificial systems are often organized

in this manner because these structures provide stability and other evolutionary advantages. These

intermediate forms are modules with high internal cohesion and low external coupling, thereby endowing a

system with what David Parnas called "information hiding" properties [66, 69]
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Figure 8: Hierarchy of Modules as Network Figure 9: Hierarchy of Modules as DSM

3.7 Networks in System Architecture

Because complexity controlling features in system architectures - notably hierarchies, modules, and layers -

can all be thought of as types of networks, many in the systems community have begun to reason about

products as networks of interconnected components. Strogatz says that "from the perspective of nonlinear

dynamics, we would also like to understand how an enormous network of interacting dynamical systems -

be they neurons, power stations or lasers - will behave collectively, given their individual dynamics and

coupling architecture." [80] System architects have begun to lean heavily on the language of networks when
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describing engineering systems and their properties. The recent report about system architecture released by

MIT [55] employs the term network 40 times. This makes sense because many important engineering systems,

including the Internet, are literally networks. [81, 82] In addition, the report contains references to {ypes of

networks including hierarchy which appears 11 times, tree which appears 9 times, layer which appears 11 times,

module which appears 59 times, and hub which appears 6 times. The MIT Architecture committee tells us that

"[s]ome architectures can be represented fairly completely as networks. In such cases, a lot can be determined

about their behavior from graph theory." After all, if architecture is an "abstract descriptions of entities... and

[their] relationships", then a network - defined by its nodes and arcs, is a natural corollary. In addition, the

group argues persuasively that many of the properties we care to measure and manage over a system's

lifecycle including "robustness, adaptability, flexibility, safety, and scalability... might be measured using

network models of a particular architecture." [55]

3.7.1 Design Structure Matrix Methods for Complex Systems

The Design Structure Matrix (DSM) is a square matrix network representation that has been used to capture

project dependencies 6 and coupling in a product architecture. DSMs represent project tasks or system

elements as network nodes and represent task dependencies or coupling between parts as arcs. Nodes are

represented as an ordered list of length N. Arcs are stored in a square matrix with size <N, N>. An arc is

added to the network by inserting an entry at a point <from node, to node>, thereby creating an association

between two nodes in the ordered list. [30, 31, 58, 78, 83] This representation makes certain features visible

that cannot be seen in a traditional "node and arcs" view. Eppinger and Browning call the DSM "a network

modeling tool used to represent the elements comprising a system and their interactions, thereby highlighting

the system's architecture." [78] Unlike typical pictures of networks, DSMs allow engineers to see the

topography and density of interconnections in and between different parts of a system. To illustrate, Baldwin

and Clark's figure of a laptop shown in Figure 10 [5] highlights the interconnections between different parts,

6 When used to represent project dependencies, these square matrices might be called 'Task Structure
Matrices' (TSMs) rather than DSMs.
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shows how those parts are clustered into modules, and points out circular interactions between parts in

different modules that should ideally prompt cross-team coordination.
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Figure 10: DSM of a Laptop Computer (From Baldwin & Clark)

The DSM community was not the first to use matrix-based representations of technical networks. (Prior

examples of square matrices depicting modularity turn up in Bergland's and Simon's work for instance. [51,

84]) The DSM community has, however, pioneered the application of square matrices as a practical tool in

large-scale systems analysis, engineering design, and project management. Browning tells us that the

"[s]ystems engineering of products, processes, and organizations requires tools and techniques for system

decomposition and integration. A design structure matrix (DSM) provides a simple, compact, and visual

representation of a complex system that supports innovative solutions to decomposition and integration

problems. The advantages of DSMs vis-a-vis alternative system representation and analysis techniques have led

to their increasing use in a variety of contexts, including product development, project planning, project

management, systems engineering, and organization design." [85] Eppinger and Browning survey the field in
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Design Structure Matrix Methods and Application. [78] This book gives many examples of their application

including a Pratt & Whitney jet engine [86-88], Xerox digital printing technology [89], and the Mozilla internet

browser. [8]

3.7.2 DSMs and System Structure

Although DSMs are now commonly used to represent product architectures, they were first used in project

management to represent tasks and their dependencies. [30]. By using a network representation with the

ability to capture feedback, Steward overcame an important limitation of the commonly used 'Critical Path

Method.' [90] These "task structure matrices" (TSMs) made it easier to explore rework and design iteration.

[31] A number of subsequent innovations allowed TSMs to be used in project estimation. [32-34]

The use of DSMs as tools for analyzing the interconnectivity patterns inside a technical architecture began

with Pimmler and Eppinger. They devised a method using the DSM to identify and evaluate alternative

modularizations. [58] Their method involved:

* Identifying parts, their connections, and the functions that those parts perform.

* Documenting the various physical and functional interconnections in a DSM.

* Ranking those interconnections based on their desirability or undesirability.

* Clustering or "chunking" the connections or interactions into different possible groupings or

"modularizations" based on the strength of interactions between parts.

Pimmler and Eppinger focused on generating many alternative architectures early in the design process so

that various schemes for decomposing design tasks, defining modular boundaries, and allocating design tasks

to teams could be considered early in the process.

In Design Rules: The Power of Modularity, Baldwin and Clark use DSMs to illustrate the means by which

modularity creates value for innovators. [5] This book illustrates its case using many DSMs starting with a

coffee mug and moving up to examples including a graphics controller, a motherboard, and a laptop
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computer. Baldwin and Clark use these DSMs to reason about the economic value of modularity in a design

and illustrate a means by which modular designs create that value. Baldwin and Clark argue persuasively that

the modular design of the IBM/360 [91] fundamentally transformed not only computer architecture, but also

the structure and scale of the hardware and software industry by increasing the return on investment of R&D

activities. 7 Others have built on this line of research by exploring how network coupling impacts the value of

an architecture [92] and the rate at which systems can improve. [93]

Novak and Eppinger explore the relationship between product complexity and vertical integration. [94] They

define the complexity of a system as a function of its component count, component interaction count, and

novelty. Their complexity calculations include coupling because integral systems are more likely to experience

change propagation and include novelty because new systems likely contain design interactions that have not

yet been discovered. They find "that in-house production is more attractive when product complexity is

high, as firms seek to capture the benefits of their investment in the skills needed to coordinate development

of complex designs." Their findings seem consistent with Baldwin and Clark's observation that the

modularity built into the IBM/360 reduced architectural complexity to such an extent that it caused the

vertically integrated industry to disintegrate and restructure in a manner consistent with the modular [5] and

layer/platform [75] structures we observe in computers and software today. (IBM's innovation was

enormously profitable in the short term, but opened the door for new competitors and ultimately caused

them to lose control of some of the most valuable subcomponents within the architecture.) Novak and

Eppinger's observations are also consistent with a study describing the re-integration of the bicycle drive-train

industry in response to a novel and highly integral innovation [4].

3.8 Exploring the Network Structure of a Software System

7 Prior to the development of the IBM/360 the computer industry was vertically integrated with each
manufacturer creating highly integral designs. Every generation of computer defined a new set of interfaces,
operating systems, and programming languages - each incompatible with the last.
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Researchers have recently begun using networks to explore the architecture of large software systems.

Valverde found that software dependency networks have "small world" characteristics and are "scale-free"

for nodal in-degree (but not out-degree). [95, 96] Sullivan et al. applied design rules theory to Parnas' classic

modularity example to illustrate the value of information hiding. [97] Settas and Stameleos used DSMs to

explore software "anti-patterns." [98]. MacCormack, Rusnak, and Baldwin conducted multiple studies

exploring large-scale system evolution and modularity. [8, 9, 79, 99]

When researchers investigate software architectures empirically, they generally construct networks by using

"call graph extractors" to pull entities and relationships out of software source-code. Dependencies are then

fed into network or matrix manipulation software for analysis. [100, 101] Call graph extractors automate the

process mining software dependencies, making the process much more efficient than manual construction

and eliminating human error from the process. Once software DSMs are extracted, they can be analyzed

alongside the contents of other databases that store information about the development process such as

"bug-tracking" and "version control" systems. Combining information from these data-sources makes

longitudinal analysis possible by giving researchers the ability to "track the evolution of a design over time."

[8]

MacCormack et al. construct DSMs by using source-code files as network nodes and inserting arcs between

them when software dependencies (such asfunction calls) span file boundaries. Once a software DSM is

constructed, MacCormack computes "visibility" metrics (based on transitive closure) designed to reflect the

modularity of architectures and the coupling of individual components. These methodological innovations

allowed MacCormack, Rusnak, and Baldwin to empirically measure the level of modularity in a large system,

to compare levels of modularity over different versions of the same system, and to compare modularity

across systems. Because MacCormack's metrics and techniques are used in this study, they will be described

in detail in the "Methods" section of this report rather than being elaborated upon here.

MacCormack, Baldwin, and Rusnak used software DSM methods to explore the evolution of the Mozilla

Internet browser, finding a substantial decrease in coupling after a refactoring effort that was undertaken to
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make its source code more maintainable. [8] They expanded upon these techniques in a variety of other

studies. In one, they explored the structure of matched pairs of comparably sized open-source and

proprietary systems that performed identical tasks, finding that open-source systems were consistently more

modular than their proprietary counterparts. [99] In another study, they tracked changes over six releases of a

software system, finding that more tightly coupled components are "harder to kill" (more likely to persist

from version to version), "harder to maintain," and "harder to augment." [9] In another study, they extracted

the architecture of over 1000 software releases of 19 applications to survey system evolution. They found

that a strong majority of systems (approximately 80% in their sample) have a "core-periphery" structure -

characterized by a network in which some files formed a tightly and cyclically coupled grouping - or core -

while others sat on the periphery. Some cores remained stable while structure grew around them, while

others grew with the size of the system. [79] MacCormack also used software DSMs to study the duality

between organizational and product architecture. [99] Other studies have followed in this research vein.

Lamantia et al. conducted two case studies finding evidence that software modularity was valuable because it

allowed different regions of code to evolve at different rates and allowed firms to substitute "at risk" modules

with minimal impact elsewhere. [102, 103] Akaikine explored the impact that the complete rewrite of a

major commercial software product had on maintenance costs. He found both a substantial decrease in

coupling and a substantial improvement in the performance of the maintenance organization. [104] Sosa,

Browning, and Mihm explored the dynamic evolution of the Ant system architecture. [105] They describe an

experimental phase before software architecture settled, the emergence of a dominant configuration, and the

appearance of limits to growth and complexity saturation "which might call for a refactoring of parts of (or

the entire) product architecture."

3.9 Some Definitions of Complexity

Summers and Shah (both mechanical engineers) usefully summarize a few of the many perspectives on

system complexity in the following quoted bullets [106]:
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" "The whole exceeds the sum of the parts. Complexity should include how the parts are assembled

into the whole. This coupling between the parts leads to the view that complexity does not include a

simple additive property from the components to the assembly, but rather there are emergent

properties that are only found collectively in the assembly. This view is predominantly for studying

the complexity of the design product."

* "Complexity is a measure of the minimum amount of information (bits) required to describe in the

given representation. The amount of information required minimally to describe something in a

specific representation suggests a lower bound of complexity for that which is described. Any

information in excess of this is superfluous or redundant. This view of complexity ignores the

possible interconnectedness of the information and how hard or difficult it is to parse the minimal

representation."

e "Complexity is the amount of effort required to manufacture or design. This view of complexity

looks at complexity from how difficult it is to solve a problem, be that manufacture or design. As

more effort is required, the complexity increases. This suggests that the complexity of a design

product or design problem are related to the design process."

* "Complexity is a measure of the tasks required to achieve some function (or components). This view

of complexity is equivalent to algorithmic complexity. A complexity measure should be developed

with respect to the number of functions and the level at which they are found that are required for

satisfying the design requirements."

* "Complexity is a measure of the phase change between order and randomness (entropy). This view

of complexity accounts only for the information compaction. It does not address the difficulty

associated with reconstructing the minimal chain of information into the original string. Consider the

complexity (entropy) associated with a random string of letters and the complexity (entropy)

associated with this paper. The two strings may be of equivalent size, thus yielding equivalent levels

of complexity. However, the effort required to produce the paper extended across years, while a four

line random number generator may be used to create the random string."
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e "Complexity is a measure of the number of basic operations required for solving a problem. The

complexity of the problem is associated with the computational complexity of the best-known

algorithm for solving the problem. This computational complexity is proportional to the time it takes

for an implemented algorithm to solve the design problem given that the basic operations are

roughly equivalent in time."

These varied perspectives (or others like them) often form theoretical foundations on which many existing

complexity metrics rest.

3.10 Measures of Software Complexity

In response to the general consensus that complexity in its various forms had a tremendous influence on

quality and cost, practitioners in the 1970s began to try to devise software complexity metrics. This effort has

continued through the present day. While each metric paints only an incomplete picture, only capturing some

important features of the code while ignoring others, each attempts to measure some important concept

related to program or psychological complexity. The oldest and most commonly used metrics are component

based. They measure some property internal to identifiable elements within a software system. Agresti says

that "Most of this work... has been focused on a single characteristic or oriented toward program modules

rather than large software systems or subsystems as units of observation." [107] More recently, some less

commonly used architectural or structural metrics have been devised to measure the interrelationships between

those elements. These structural measures look at coupling, cohesion, modularity, interfaces, cycles and other

system-level attributes in a software system. Some component-based and structural metrics devised over the

years have been found to relate to quality, maintainability, and other desirable project and product attributes.

3.10.1 Component-Based Complexity Metrics

The simplest (but also crudest) measure of complexity employed is the raw count of lines of code (LOC) in a

program, file, function, class, method, or other programming construct. LOC is a reasonable metric for use

in project estimation because all else being equal, it will be strongly correlated with to the effort required to

create a working piece of software. LOC based metrics have earned a bad reputation in some quarters, not
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because they are not useful, but because their use creates perverse incentives when applied inappropriately for

rewarding individual productivity. The software engineering community has generally abandoned this

practice for the simple reason that the metric is easily gamed in a way that leads to bad programs. LOC

metrics are still valuable for estimation purposes, and for estimating productivity in a statistical sense, so long

as the metric is not simultaneously used to judge individuals. Some studies have found a relationship between

module size (in LOC) and defect density, possibly because more complex code requires more room or

because larger modules are more complicated. [108]

Two early metrics that received wide attention were those devised by Halstead and McCabe. Halstead

proposed a set of interrelated metrics, also based on a static analysis of code that measured a program's

operands and operators and derived measures of its "volume," difficulty to understand, and the effort

required to write it. [109] Unfortunately, Kan says that "empirical studies provide little support to the

[Halstead] equations." [108]

McCabe proposed a "cyclomatic" complexity metric that has proved more successful. McCabe assigns a

number to a "structured program" or block of executable code based on a static analysis of the number

linearly independent execution paths that can be followed as a program executes. In modem programming

languages, McCabe scores typically apply to procedures (called functions in C or C++) or class methods.

Alternative paths through a procedure result from conditional branching statements (f"statement, switch/case

statement, while loops, etc.). [110] Gill and Kemerer provide the following four-step recipe for computing the

original version8 of McCabe's metric. [111]. We will quote from their definition:

1. Increment one for every IF, CASE or other alternate execution construct

2. Increment one for every Iterative DO, DO-WHILE or other repetitive construct

3. Add two less than the number of logical alternatives in a CASE

8 A common variant (the one used as a control variable in this study) excludes switch/case statements from
consideration in the McCabe score. This is often referred to as "Modified McCabe cyclomatic complexity."
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4. Add one for each logical operator (AND, OR) in an IF

McCabe asserted that his number could be used to estimate the effort required in test coverage. He also

suggested that cyclomatic complexity for functions or methods should be kept below the value 10 so that

they remain understandable and testable. A classification scheme has been devised to bin functions into four

general types based on their McCabe scores. [112] Functions with scores of:

* 1-10 have "low" complexity

* 11-20 have "medium" complexity

* 21-50 have "high" complexity

* 51 and above are considered "untestable"

McCabe's metric has been positively related to defect density [113-115] and the productivity of developers

doing maintenance on previously shipped code. [111] Many firms now use McCabe's scores as a means of

identifying problematic code.

A variety of similar syntactic metrics have emerged with the advent of new languages and methodologies.

[116, 117]. Many studies have been conducted to test the relationship between complexity metrics and

quality, maintainability, and other non-functional attributes of code. Some complexity metrics have been

found to correlate with quality [118, 119] or maintenance effort [120, 121] Due to the realization that LOC,

McCabe's, Halstead's, and other syntactic constructs each might capture certain limited aspects of code

complexity, composite metrics have been devised as well. Card and Agresti found that a metric combining

information about control flow (as measured by fan-out) and information flow (as measured by the size of

the interface as measured by I/O variables) correlated strongly with defect density. [119, 122] Another index

was created that has been shown to be a good indicator of software maintainability. [123] A variety of other

indices have been created, some of which have been calibrated to predict various ilities. Some of these indices

are expressed as complex polynomial equations and can serve as indicators pointing developers to modules

that may be in need of attention.
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3.10.2 Structural Complexity Metrics

In addition to syntactical metrics, a number of lesser-used structural metrics exist, some of which relate to

levels of coupling and cohesion. [124, 125] Two metrics of note are "fan-in" and "fan-out" [126] which are

measures of the direct structural connectivity between components. Fan-in counts the number of components

that depend upon a component, while Fan-out counts the number of components that are depended upon by

a component. When looking at the degree distributions of software networks, Valverde has found that

software dependency networks have "small world" characteristics and are "scale-free" (obeying a Power-law

distribution) for nodal in-degree (but not out-degree). Kan cites studies indicating that Fan-out correlates

with defects (because it is a measure of the number of upstream components) but suggesting that Fan-in does

not. [108]

MacCormack, Baldwin, and Rusnak devised a procedure for classifying software components (such as files)

based on their level of direct and indirect coupling with the rest of a software system. [8, 9] Their directed-

network-based classification scheme identifies "core" nodes - those that are contained within the largest

network cycle. In some senses, this classification scheme can differentiate between software source code files

whose interactions with the rest of the system are mediated through hierarchical or modular constructs and

those that are more tightly coupled to disparate parts of the system. (This metric only captures some

important properties related to hierarchy and modularity.) Because the MacCormack approach is used to

operationalize the notion of "architectural complexity" in this study, we will give a detailed description later in

this report.

3.10.3 Criticism of Complexity Metrics

Complexity metrics have generated a large amount of debate for a number of reasons. Some have highlighted

the limitations of these types of metrics. Curtis et al. conducted experiments to test their relationship with

"psychological complexity." [22] Under a limited set of experimental conditions, Curtis found that program

size, cyclomatic complexity, and Halstead metrics correlated with programmer accuracy and time to task
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completion. His results held only when the programs were unstructured, contained no comments, and the

developers being tested were inexperienced, however. Curtis concluded that things like good variable names,

comments, and indentation play a strong role in reducing psychological complexity even if they are not

considered by the McCabe and Halstead metrics. Furthermore, a lack of correlation for experienced

developers led the researchers to theorize that senior developers have mental schemas that they apply during

program analysis in the same way a chess-master evaluates a board. Because these developers 'see' higher-

level structures and behaviors rather than individual symbols in the code, measures that are easily calculated

from small pieces of code might have limited explanatory power. Curtis said that to be effective, metrics

should consider aspects of psychological complexity in their formulation. Another limitation of metrics is

that there are many important desirable properties of software that nobody knows how to measure.

Furthermore, we lack a clear explanation for why some complexity metrics correlate with quality attributes

even when they do. This is especially true for composite metrics. Because many metrics lack an underlying

theory of programming or psychology, many believe that they are only crude indicators that are often useless

due to a lack of robustness, normativeness, or prescriptiveness. [108, 127]. Another important limitation of

those traditional metrics is that they are local in nature. Due to computational limitations, most component-

based metrics quantify properties of a single function, method, class, or source file in isolation without

considering the complexity of the relationships between those isolated units. These metrics fail to capture the

complexity and complicatedness created by inter-component coupling patterns - both of which are important

factors in software development and maintenance.

3.11 The Difficulty of Placing a Value on Redesign

In an ideal world, engineers evaluating system designs would judge alternatives by doing a full accounting of

the long-term financial and other stakeholder value that would be generated by each. This would require the

designer to estimate the benefits of system functionality and performance characteristics as well as the costs,

including the cost of complexity, within the design. Multiple objectives could be defined, and the net present

value (NPV) of design alternatives could be estimated, reasoned about, and optimized. Some promising
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efforts have been made to apply financial valuation techniques to software project decision-making. [128]

Unfortunately, the use of objectively rational decision-making models is often unrealistic or impractical under

most circumstances. As a result, normal decision-making biases can tip scales in favor of sub-optimal choices

because some costs and benefits are salient to designers and managers while others are not. While the benefit

of additional system performance might be immediate, clear, and calculable, some costs of complexity are

hard to understand, long-term in nature, and may be borne by someone other than the original system

creator. Under these circumstances, an organization may be biased against incorporating complexity-

controlling (but more expensive or performance limiting) structures in an initial design even if the NPV of

this alternative were objectively superior.

Similar issues arise during ongoing maintenance of complex systems, many of which are incredibly long-lived.

Whitney et al. tell us that "[s]ometimes, architectures are designed or evolve to minimize complexity, but, as

systems grow in size, a point is usually reached where a system's complexity becomes overwhelming,

imposing a limit on what one can do to operate the system, predict its behavior, or change it." [55] Scaling

limits, [105] changing requirements, and other stresses during maintenance can cause systems to "decay" over

time. Natural entropy can erode modular boundaries or connect components whose interactions were

previously mediated through hierarchies and layering schemes. These systems will become brittle and increase

the likelihood of unwanted change propagations [129, 130] A system may become less coherent, defects

might become more frequent, and the productivity of engineers maintaining it might decline. When this

occurs, some engineers will call for a design overhaul, known as a "refactoring" [131] in the software

community, to improve the situation going forward. Unfortunately, managers dividing scarce resources

between developing new features, defects correction, and redesign will tend to favor the first two options.

Although those advocating redesign may intuitively understand that refactoring is in the long-term interest of

the firm, they have no good way to support this intuition in a quantifiable manner. They cannot easily draw a

clear line between complexity reduction today and fewer defects or improved effectiveness tomorrow.
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There are other reasons for an underinvestment in redesign. The costs imposed on the development

organization by problems in an existing architecture may be invisible - hidden in the form of tacit and

unquestioned performance expectations, norms, processes, or routines. [132] A company may have no basis

for comparison - no means of weighing the cost of maintaining their current system against some

hypothetical alternative implementation. The true cost of not confronting complexity within an existing

design might be unconsidered and unknown. Calls to refactor might only come after high-profile defects or a

noticeable erosion of productivity. Under this type of threat, however, the group may feel pressure to engage

in "fire fighting" to improve short-term performance or display heroics under scrutiny. Because redesign is a

'worse-before-better' proposition, it runs counter to these instincts. [133-135] Although refactoring might be

incredibly valuable in the long-term, it will offer few immediate rewards and will consume the attention of

many highly skilled employees. Because such an endeavor often defies short-term individual, managerial, and

investor instinct, pursuing this course requires visible and sustained executive-level support.
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4 Conceptual Model, Gap in the Literature, and Hypotheses

In this section, we will articulate a conceptual model linking the complexity within an architecture to specific

costs incurred by an organization including quality problems, lower productivity, and higher staff turnover.

We will also look at prior work that has been done to establish this link, identify gaps in that literature, and

state three testable hypotheses.

4.1 Conceptual Model

Some designers of real-world complex systems may encounter persistent problems in parts of the system they

interact with. Problem components might require more defect corrections. They might be rigid, inflexible,

or hard to change. They might be brittle - subject to break if perturbed. They might be unstable - requiring

continual change to accommodate various demands unrelated to improved functionality. They may also be

incomprehensible - hard to understand and work with. Software developers working in problematic files

may have trouble keeping track of how the code operates. Their productivity may slip. They may trigger

more unintended side effects and may introduce more defects. They may have trouble making educated

guesses about when work will be completed. Their vantage point may lead them to perceive their portion of

the system as inelegant, inconsistent, or conceptually incoherent relative to other parts in the system. It is

conceivable that designers who routinely interact with these issues may even have slower learning curves,

lower job-satisfaction, and a higher likelihood of leaving the firm.

ArchitecturaI
complexit

Defect Developer Staff
density productivity turnover

Figure 11: Conceptual Model
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In this work we hypothesize that these problems can be caused by complexity in the system's architecture.

We differentiate this architectural complexity from more traditional inward-looking metrics, such as McCabe's

score, that are designed to capture the complexity contained within individual components, files, functions,

classes, or methods when considered in isolation. Architectural complexity is outward facing in that it aims to

capture the complexity of the connectivity structure between a component and the rest of the system.

The architectural complexity of a component is higher when it is in a positioned in a region of the system

with a relative absence of canonical structures known to keep systems stable and within the bounds of human

understanding: hierarchy and modularity, among others. Architecturally complex components may have been

initially positioned within integral parts of the system, or entropy in the development process may have

degraded interfaces and connected formerly isolated segments of the system. If interconnectivity patterns

contain architecture spanning cycles, feedback may cause design iterations or gridlock during ongoing

maintenance and development. Files that are positioned in more complex regions of a system architecture

should be harder to work with, and hence more costly to the development organization.

Useful metrics for operationalizing the concept of architectural complexity are the visibility metrics developed

by MacCormack, Baldwin, and Rusnak. These metrics can be used to categorize files based on how reachable

they are within the network of components and whether they are positioned within large cycles. [8, 9]

4.2 Complexity and Quality

In the first analysis in this thesis we explore the link between architectural complexity and defect density.

Many previous studies have looked at determinants of software defects for good reason. Quality problems

have plagued software since its invention, leading many academics and practitioners to repeatedly declare the

field of software engineering to be in a state of crisis. Major project failures and the loss of human life due to

software errors are seen as a much too common occurrence. [6, 116, 136-139]
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Complex software is difficult to design correctly. While some defects are attributable to bugs introduced

during the coding process, many are caused by incorrect, incomplete, or inelegant requirements and

specifications. To complicate matters further, Brilliant et al. found that many defects are caused by

complexity in the problem domain itself. Certain required processes or algorithms are harder to code

properly than others, regardless of programming methodology, decompositional strategy, or language

employed during software design. [140] Subtle errors at architectural interfaces may be especially damaging

because they may be found late, be harder to fix, and therefore cost substantially more to correct. These

types of issues may only become apparent during system integration. [141] Unfortunately, the cost of fixing a

defect has a geometrical relationship to the development stage in which it is found, which potentially makes

them extremely expensive. [142]

Complex software is exceedingly hard appropriately validate. Some of these difficulties arise from properties

unique to software that make it exceedingly difficult to test. Many traditional means of managing the quality

of electromechanical systems do not work in the software domain. Firstly, because software has a discrete

(rather than continuous) nature, tracing the possible paths through code or enumerating the possible system

states results in rapid combinatorial explosion. In physical systems, the continuous nature of products allows

testers to collapse the state-space by making various logical inferences. Furthermore, most risk models

developed for physical products focus on the probability of individual part failures due to wear. In software

there is no such thing as "wear." Software defects are in some sense always caused by design or specification

failure. As a result, statistical models imported from the electro-mechanical domain are sometimes useless.

[6, 143]

Over the years software engineers and computer scientists have taken different approaches to addressing

quality issues. One school of thought, pushed by Dijkstra, Hoare, and other mathematically oriented

computer scientists, has advocated for the use of formal methods and proofs of program correctness. [144,

145] Such methods have gained traction in the kernels of mission critical applications, but have been viewed

as impractical for larger general-purpose software. Most large software projects rely instead upon system and
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unit testing regimes. [146-148] While such testing is useful, it can never be perfect. Due to combinatorial

explosion it impossible to test even many reasonable conditions. Given the impossibility of full test coverage,

an organization must consider the level of acceptable risk when determining how many resources to dedicate

to testing. [149] Disagreements between the formal methods and testing camps have subsided to a large

degree, and advances have been made in both the theory of testing [150] and the practical utility of formal

methods [77] over time.

Various studies have been conducted to find relationships between development process measures, software

product measures (including complexity of various sorts), and defect density. Unsurprisingly, more defects

are found in files that are larger and that experience more overall development activity. [151] These strong

predictors are often included as controls in statistical models looking at defects in a file. There is

disagreement about the relationship between a file's age and its defect density. Graves found that older files

had fewer bugs [152] but Kemerer and Slaugher [115] found that they had more. A variety of development

process metrics have been found to correlate with defect density as well. Mockus et al. found that changes

that modify files in multiple subsystems are more likely to introduce defects, suggesting that misalignment

between functional relationships and structural relationships in the code increases risk. [153] Eaddy et al.

obtained a similar result, finding that code implementing "cross cutting concerns" has more defects. [154]

Cataldo et al. found that files that have many "logical" dependencies (i.e., over a defined time period, changes

to those files are submitted together) have more defects. [151] Interestingly, however, they also found that if

groupings of files with logical dependencies form stable clusters, then defect density goes down substantially.

This suggests that natural modules that successfully contain functional changes within their borders

successfully manage complexity. Cataldo also found that changes that must be jointly implemented by

multiple people are associated with greater defect density in files.

As previously noted, McCabe's cyclomatic complexity number has been found to correlate positively with

defect density. [113-115] Functions and class methods with high McCabe scores are hard to understand.

They are therefore more likely to contain errors and more likely to be modified incorrectly. They are also
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harder to test appropriately due to a combinatorial explosion of execution paths. Card and Agresti found that

a metric combining information about control flow (as measured by fan-out) and information flow (as

measured by the size of the interface as measured by the number of I/O variables) correlated strongly with

defect density. [119, 122] Code with high intra-module cohesion and low inter-module coupling has been

found to have fewer defects as well. [155-157]

As previously noted, large-scale systems structured as nearly decomposable hierarchies of loosely coupled

modules are thought to possess a number of significant evolutionary advantages that should lead to fewer

defects. [48, 51, 69] Much of that work that establishes this link has been theoretical and descriptive in nature

however. Despite a large body of literature that has taken a quantitative approach to exploring the

relationship between various process, syntactic, and structural predictors of defects, little of work has been

done to quantitatively explore the relationship between the defects experienced by a software component and

the high-level architectural properties of the system in which it rests. One notable exception is a recent study

conducted by Sosa, Mihm, and Browning in which cyclical relationships (which are disallowed in hierarchies)

between Java classes in an open-source software project were found to predict future defects. [158] No

similar studies have been conducted on a large commercial codebase developed by a large group of paid

software engineers, however.

This leads us to our first hypothesis:

Hypothesis 1: Software files with higher levels of architectural complexity are more errorprone. Complex files will be

modified to fix defects more often than other files.

4.3 Complexity and Productivity

In our second analysis we explore the link between architectural complexity and developer productivity. The

need to understand productivity has been driven to some extent by the project management community.

Managers need the ability to do reliable cost and schedule estimation for planning and contracting purposes.
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Within this context, the focus has been on team or organizational productivity. Another large body of work,

much of it theoretical, qualitative, and descriptive, has looked at the impact of system architecture on the

effectiveness of design and maintenance organizations. In addition, some researchers have done empirical

and experimental work to explore determinants of individual productivity. A portion of that work has looked

at the link between productivity and various forms of complexity.

4.3.1 Software Cost and Schedule Estimation Techniques

A variety of techniques have been devised to help project planners estimate cost and schedule for software

development projects. Kemerer [159], Jorgenson [160], and Boehm [161] have each written papers surveying

activity in this field. In 1987, Kemerer noted that Boehm's COCOMO model [162] and the SLIM model

[163] were in wide use and had general applicability. Other techniques that have come along since that time

include Delphi, a rule-based approach, system-dynamics-based approaches pioneered by Abdel-Hamid and

Madnick [27, 28], COCOMO II (an update to make COCOMO suitable for estimating Object-Oriented

software projects among other things) [161], and Agile estimation techniques. [164] Boehm says that people

devising these estimation techniques "all faced the same dilemma: as software grew in size and importance it

also grew in complexity, making it very difficult to accurately predict the cost of software development." [161]

Boehm continues:

Just like in any other field, the field of software engineering cost models has had its own

pitfalls. The fast changing nature of software development has made it very difficult to

develop parametric models that yield high accuracy for software development in all domains.

Software development costs continue to increase and practitioners continually express their

concerns over their inability to accurately predict the costs involved. One of the most

important objectives of the software engineering community has been the development of

useful models that constructively explain the development life cycle and accurately predict

the cost of developing a software product.
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This problem is far from academic. In 2006, Laird and Brennan reported that the average project overran its

budget by 45%, only 28% were delivered on time, and 23% of projects were killed. [165, 166] Boehm says

[161] that planners using COCOMO or other estimation models glean information from past projects and

combine it with information about the current design, the available workdays, team size, team skills, and labor

costs to produce estimates for effort, schedule and cost. This process generally takes place during or

immediately after the architecture phase of a project. Many of these models take as inputs:

" Estimates of a project's size in lines of code (LOC), instructions, function points, or object-oriented

constructs

* Estimates of an average developer's productivity in terms their ability to deliver LOC, instructions,

function points, etc. per unit time.

" Crude multipliers or scaling factors to account for customer complexity, system complexity, novelty,

etc.

When studying the accuracy of estimation models, Kemerer found that "models developed in other

environments do not work very well uncalibrated." Organizations wishing to use models must collect

historical data internally before they can be very useful. He noted that the best models, once calibrated,

worked reasonably well, "explain[ing] 88 percent of the behavior of the actual man-month effort [159].

Kemerer concludes by noting what he believes to be the fundamental weakness of these estimation

approaches. [159]

[A]lthough improving estimation techniques within the industry is a worthwhile goal, the

ultimate question must concern how the productivity of software developers can be

improved. These estimation and productivity questions are related in that the estimation

models contain descriptions of what factors their developers believe affect productivity.

How well do these models identify and reflect these factors?... []he models, although an

improvement over their raw inputs for estimating project effort, do not model the factors
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affecting productivity very well. One possible extension of this research is to... attempt to

determine the causes for the wide swings in accuracy of the estimates across projects. What

characteristics make a project amenable to this type of estimation? What factors could be

added to the models to enable them to do a better job on all of the projects? On the

productivity side... projects show a large amount of variance in terms of such traditional

metrics as SLOC per man-month. Can these variations be traced to productivity factors

controllable by the software manager?... Further research needs to be done to isolate and

measure these factors affecting systems professionals' productivity if the profession is to

meet the challenges of the future.

4.3.2 The Impact of Architecture on Productivity

Architectural factors strongly influence developer productivity considered in the aggregate. In fact, Printz

makes a compelling argument that the equations underlying the COCOMO model presume that the system

being developed has been appropriately modularized according to Parnas' principles, thereby allowing

developers to operate independently. If a design is not sufficiently modular, Printz asserts that estimation

models lack a solid theoretical foundation. [167] A substantial body of work in design and systems theory

explores the means by which hierarchical decomposition and modularity eliminate feedback in the design

process, thereby enabling this independence of action and reducing the likelihood of change propagation or

rework. [5, 30, 31, 34, 36, 46, 55, 58, 66, 69, 70, 168-172] (This work has already been discussed and will not

be revisited in great depth here.) The architecture of a product being developed or maintained has a

substantial impact on the productivity of a development organization. Misalignment between the structure of

a complex product and the needs of a development team can impair organizational performance. Recent case

studies have shown that refactoring software to reduce architectural complexity can be extremely rewarding

because it can make developers more productive when implementing new functionality, and because it

reduces defect-proneness, thereby allowing the developer to expend less effort correcting, testing for,

avoiding, and preventing defects. [8, 104]
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4.3.3 The Productivity of Individual Software Developers

Some experimental and empirical work has explored the determinants of individual and team productivity.

Controlled experiments have been conducted to study the time it takes developers them to complete tasks (or

their ability to complete the task at all) under a variety of conditions. (Unfortunately, many of these studies

have used computer science students rather than professionals as test subjects.) Industry studies have

combined information from change tracking, accounting, and version control systems to determine the rate at

which various tasks have been performed.

Most productivity studies have looked at factors that contribute to project or team productivity. Blackburn

reports that smaller teams, projects with shorter cycle times, and teams that spend more time on requirements

and prototyping are more productive. [173] McCormack et al. found that developers on larger projects,

projects with complete functional specifications, and projects that employed prototyping were more

productive. They also found a weak relationship between productivity and the completeness of detailed

design specifications. [174] It is well known that defect correction is more difficult and time consuming than

the development of new features. Banker et al. tell us that 50% of effort expended during a maintenance task

is consumed trying to understand the code, and that complexity is strongly related to understandability. [175]

The effort required to correct a defect grows dramatically as time passes, partially due to a need to reconstruct

a mental model of the code and partially due to the "knock-on" effects of quality problems. [24, 59] Practices

aimed at minimizing defect introduction and finding defects early have an extraordinary impact on individual

and team productivity as a result.

Some studies have looked at determinants of individual productivity. Many researchers have noted substantial

variations in developer ability. The productivity of individuals has been shown to vary by an order of

magnitude. [162, 176-183] (Although not highlighted in this report, we should note that a 10x difference in

developer productivity between the top and bottom quartile was observed in the data used for this study as

well). The impact of individual variation is very strong, likely exceeding the impact of most project or

software related factors. Due to this highly skewed individual variation, studies exploring other factors must
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take care to appropriately control out this noise. Other important relationships have been found. Individuals

with more experience and a diversity of experiences tend to be more productive. Unsurprisingly, developers

are also more productive when they have done prior work that that is similar to the current task. [175]

Evidence of learning curves in software development has been found. [184, 185] In addition to age and

experience, individual practices matters as well. Littman et al. did an experiment and found a strong

relationship between an individual's problem solving strategy and performance on experimental maintenance

tasks. They identified developers who used "systematic" and "as-needed" strategies during problem solving.

"As the names imply, maintainers employing a systematic strategy attempted to construct a mental model of

how the program worked, and then used that mental model in the performance of their maintenance task.

Others only examined the program code when necessary to check specific hypotheses. The systematic

maintainers were the only ones who successfully completed the maintenance tasks. Recently, Robson et al.

have noted that this finding may be an artifact of the small program used in the experiment, and that on large

programs the systematic approach may be infeasible, leaving no preferred strategy." [186] This last point is

important. It suggests that if complexity (architectural or otherwise) is so great that the mental model

required to use the "systemic" strategy is too large to fit into an individual's head, the "as needed" strategy is

the only one available.

A few studies have looked at the relationship between code complexity and productivity. By combining data

from software tracking systems and billing systems at a defense contractor, Gill found McCabe's cyclomatic

complexity to be negatively associated with developer productivity when performing software maintenance

[111] Chen reported that an entropy-based program-control-complexity metric correlated negatively with

productivity under experimental conditions (but a sample size of 8 prevents us from drawing conclusions.)

[187] In another experiment, Curtis found that program size, McCabe cyclomatic complexity, and Halstead

metrics were negatively correlated with programmer accuracy and time to task completion. His results held

only when the programs were unstructured, contained no comments, and the developers being tested were

inexperienced, however. For experienced developers, no effect was found. [22] Akaikine and MacCormack

recently found that after a commercial software application was completely rewritten in a different language,
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resulting in a system with much lower architectural complexity, the company's maintenance organization was

capable of patching critical defects more rapidly. [104]

There is a large and diverse body of descriptive and theoretical work describing the virtues of hierarchy,

modularity, and other architectural patterns in system designs. Much of that work tells us that engineers

should be more productive when working in well structured architectures. Unfortunately, there is currently

no empirical research validating this link between a system's architectural properties and the productivity of

engineers doing feature development or maintenance. This represents a serious gap in the literature on

complex system design management. Our second hypothesis is therefore the following:

Hypothesis 2: When working in more complex regions of a system design, developers are less productive. Developers

working in complex regions will produce fewer lines of code overall, fewer lines of code when implementing

features, and fewer lines of code when correcting defects, than they would when working in less

architecturally complex regions of the system.

4.4 Complexity and Human Capital

In our third analysis we explore the link between architectural complexity and human capital issues. More

specifically, we explore the link between the architectural complexity of the code a developer works in and

the probability that that developer leaves the firm. Turnover is costly in its own right. In addition, measures

of staff turnover can also be viewed as a proxy for other costs related to the performance issues, morale

issues, or burnout that might precede a voluntary or involuntary termination. While some amount of

turnover in any organization is healthy, a causal link between code-complexity and turnover could hardly be

seen as positive. In this section we will review pertinent literature on potential human costs of complexity

such as morale and staff turnover among technologists and state our third hypothesis.

Most research on motivation and turnover among technical professionals is aimed at technology managers,

seeking to improve managerial practice. (An excellent reference is The Human Side of Managing
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Technological Innovation by Katz [188])

Software development staff turnover is very costly for a development organization. Westlund says,

"Retaining information technology employees has been a problem in many organizations for decades. When

key software developers quit, they depart with critical knowledge of business processes and systems that are

essential for maintaining a competitive advantage." Kemerer relays a similar insight provided by Dean and

McCune: "a survey of Air Force maintainers reported that the top three problems in software maintenance

were all comprehension related: (1) a high rate of personnel turnover requiring that unfamiliar maintainers

work on the systems, (2) difficulty in understanding the software, particularly in the absence of good

documentation, and (3) difficulty in determining all of the relevant places to make changes due to an

inadequate understanding of how the program works." [120]

Because turnover is costly, it is important to understand the factors that lead to it. In a survey of software

developers, Westlund looked at the relationship between "turnover intentions" (an employee's willingness to

leave) and nine factors including satisfaction with pay, opportunity for promotion, quality of supervision,

benefits, contingent rewards, working conditions, happiness with coworkers, satisfaction with the nature of

the work, and satisfaction with communication. Multiple linear regression models were used to isolate the

impact of each determinant. While all of these predictors correlated with turnover intentions, some effects

were stronger than others. The strongest predictors of turnover were satisfaction with contingent rewards

(the acknowledgement of a job well done), communication, and supervision. The weakest were satisfaction

with benefits and working conditions. [189]

Motivation (and demotivation) are strongly linked to turnover. It is therefore important to understand the

factors that motivate technologists. In 2007, Beecham, Baddoo, and Hall surveyed the literature on

motivation among software engineers. [190] Their summary of the topic included a number of interesting

insights: Characteristics of the personality makeup of software engineers include "the need for growth and

independence... The need for growth may be due to the engineer's internal make up, and... the need to keep

up with the fast changing technology. The need for independence is possibly linked to the type of person
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attracted to software engineering that is sometimes seen as a creative task that is not helped by overbearing

management." [190] The "most frequently cited motivators in the literature are, 'the need to identify with the

task' such as having clear goals, a personal interest, understanding the purpose of a task, how it fits in with the

whole, having job satisfaction; and working on an identifiable piece of quality work." [190-192] In addition,

"An experienced Software Engineer is more likely to be motivated by challenges, opportunities for

recognition and autonomy." "Poor working conditions" and "lack of resources" are the most commonly

discussed demotivators. The effect of work type - new feature development vs. maintenance tasks - on

happiness was somewhat ambiguous. Maintenance activity was cited as demotivational in some studies, while

other studies showed that some engineers were happy working to maintain legacy code (provided that that

maintenance involved the evolution of functionality rather than strictly being corrective in nature). [190]

It is widely understood that people do not leave firms; they leave their bosses. Supervisors who inhibit the

productivity of creative professionals or who behave erratically can create toxic work environments. It stands

to reason that technical systems that inhibit productivity or that behave erratically may have a similar

demotivational effect. After all, software engineers spend more time with the code than with their

supervisors. If architectural complexity causes more defects (as stated in hypothesis 1) and impairs

productivity (as stated in hypothesis 2) then it may very well impair morale and lead to voluntary turnover.

Additionally, because architectural complexity is neither directly observable nor well understood, a manager

may fail to appreciate its influence. As a result, lower productivity or higher defect introduction rates may

lead a manager to inaccurately conclude that a subordinate is a poor performer, leading to an increased

probability of involuntary turnover. Unfortunately, there is no body of literature exploring the link between

architecture or complexity on morale and turnover. This leads us to our third hypothesis:

Hypothesis 3: Developers working in more complex regions of an architecture are more likey to leave theirjob voluntarily or

involuntarily. Assuming hypotheses 1 and 2 hold, these developers will be frustrated by the increased

propensity towards defects, be frustrated by the lower productivity they experience, or be evaluated negatively

by managers or peers as a result.
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5 Research Methods

A variety of research methods were chosen to explore the links between costs and complexity. This section

describes the means used to represent architecture, the means of defining and measuring complexity, and the

means by which architecture and complexity metrics were extracted from a large software system. We then

demonstrate how the complexity metrics used in this study relate to hierarchy and modularity. We go on to

describe the workflow and tools used by software developers, the historical data that is produced as a side-

effect of their work, and the means by which we can exploit historical databases to measure defect density,

productivity, and staff turnover within an organization.

5.1 Measuring Architectural Complexity in Software

Well-known patterns are employed by man and nature to control complexity as systems scale. These include

hierarchy and modularity. Technical architectures in which these patterns are judiciously applied tend to be

of higher quality, be safer, and to benefit from other "ilities" over the course of their lifecycles. "Judicious"

does not always imply more, however, and more is not always better. There are certainly well designed systems

that are integral where these patterns may be less pronounced. Integral systems are more architecturally

complex than comparably sized systems with hierarchical structure or modular boundaries, and that

architectural complexity may also make them more costly. Within the same system, different regions will be

more interconnected or less so, and will therefore have varying levels of intra-system architectural complexity.

Components in a position to affect many other components, or that can be affected by many other

components, have high levels of architectural complexity relative to their less well-connected peers. Affecting

or being affected by other components need not be direct - it may be done through an intermediate

connection. Architectural patterns are global features of a design. To capture the impact that these

architectural patterns have on a single component we must therefore use metrics that take both direct and

indirect relationships into account.
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Networks are established tools for representing and analyzing system architectures because they are a natural

means of capturing hierarchical relationships, modularity, coupling, cohesion, and cyclicality, and other

architecturally important patterns. When networks are used for this purpose, network nodes designate parts,

components, or system elements. Arcs or lines between nodes designate functional or structural relationships

between those parts. If these arcs are directed they can represent one-way dependencies between parts.

Directed networks are appropriate abstractions for use in this study because they can be used to represent

relationships between software constructs that are often unidirectional. In this research, we extract networks

from a software product's source code. We then compute network metrics as a means of assigning

architectural complexity scores to each file within that codebase.

5.1.1 Networks and DSM Architecture Representations

A network is a means of representing entities and the paths or relationships between them. In network

terminology, an entity is a "node" while a path or relationship is an "edge" or "arc." The following figures

show the same simple network in two different ways. Figure 12 is a traditional network view. Nodes A, B,

and C, are connected by the arc BA and the bi-directional line CA. In Figure 13, this same network is

represented as a square matrix. Nodes have the same ordering down columns and across rows. Dots in the

matrix the same purpose as the arrows in the traditional view. A directed arc is read by looking first at a row

(the "from" dimension"), finding a blue dot indicating an arc, and then scanning up the column to see which

node the arc goes "to." In the traditional representation, each node is a single point. In the DSM

representation, each arc is a single point. While encoding identical information, each view can highlight

different network features.
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A

Figure 12: Simple Network Figure 13: Simple DSM

Two real-world networks can illustrate the value of both traditional and DSM network notations. The

Moscow Subway map shown in Figure 14 (a traditional view) can be used in navigation.9 A matrix

representation would not allow a person to reach a destination. On the other hand, the matrix representation

of the Mozilla software system (shown in Figure 15) can be used to highlight the modularity and coupling

patterns in the system. [9] A traditional view would not make these properties visible.

9 Thanks to Dan Whitney for providing this example.
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than those used in much of the DSM literature due to differences between software and

hardware. See Figure 3 for a detailed explanation.
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Figure 14: Moscow Subway Map Figure 15: Mozilla DSM

5.1.2 Procedure for Assigning Architectural Complexity Scores to Source Code Files

In this research, we operationalize the concept of architectural complexity by using network metrics devised

by MacCormack, Baldwin, and Rusnak [8, 9] that capture the level of coupling between each software file and

the rest of the system, and therefore represent relative absence of modular isolation or hierarchical structure

in a design.

The MacCormack approach can be described in the following 5 steps:

* Capture a network representation of a software product's source-code using dependency extraction

tools

e Find all the indirect paths between files in the network by computing the graph's transitive closure

e Assign two visibility scores to each file that represent its reachability from other files or ability to

reach other files in the network

" Use these two visibility scores to classify each file as one of four types: peripheral, utility, control, or

core.
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This procedure and its rationale will be described in detail in the next sections.

5.1.2.1 Extracting DSMs From a Software Codebase

Software developers can create and modify systems consisting of thousands of source code files and many

millions of lines of code. Each source code file contains text written in a specific programming language.

These files typically specify functions a computer should perform and data structures for those functions to

operate on. Functions tell a computer's processor what instructions to perform while the data structures

define information that will be stored in a computer's memory. Similar functionality is often grouped inside

the same source code file, but some files will depend on functionality or data described in other files. When

software development is complete, all of the files must be compiled and linked together. 10 Each file is

translated into a machine-readable form, and cross-references between files are resolved. Once this linking

step is complete, a program can be loaded and run.

In this research, we construct networks that represent software source-code files as nodes. When a

relationship spans two files (such as the invocation of functionality or data access), it will be represented as an

arc between two nodes. Figure 16 is a very simple illustration containing a program with two files, each

containing two procedures. The first file defines procedures for calculating properties of a rectangle. The

second defines generic mathematical procedures that multiply and add numbers. Calls from the "rectangle"

functions to the "math" functions span these two files. This example would result in a network with two

nodes, and a single arc from "rectangle-functions" to "mathfunctions".

10 The same logic occurs with interpreted languages, but the translation and linking happen at run-time. In compiled
languages, some linking may be performed dynamically at runtime as well.
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// file name: rectangle functions

procedure area = rectanglearea(length, height)
area = multiply(length, height)

end

procedure perimeter = rectangleperimeter(length, height)
perimeter = add(multiply(length, 2), multiply(height, 2))

end

// file name: mathfunctions

procedure sum = add(numl, num2)
sum = num1 + num2

end

procedure multiple = multiply(numl, num2)
multiple = num1 * num2

end

Figure 16: Simple Pseudocode

Real software products are obviously much larger than this (admittedly absurd) example. For example, the

DSMs shown in Figure 17 and Figure 18 represent two entirely different software systems of roughly

comparable size. In both DSMs, an algorithm has reordered the files so as to move as much "mass" below

the diagonal as possible. The software system shown in Figure 17 has a structure that is extremely

hierarchical (As demonstrated by the fact that the algorithm moved almost all mass below the diagonal.) The

software system in Figure 18, on the other hand, has a "core-periphery" structure. When a system has a core-

periphery structure, the lower-diagonalization process naturally segments a DSM into four distinct regions.

Figure 18 includes files that are utilities (relied upon by many others), a core with indirect and cyclical

connectivity, files that are on the periphery of the network, and controller files that call out to many other

files. MacCormack has found that approximately 80% of software systems have this "core-periphery"

structure, while approximately 20% are more purely hierarchical. [79]
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Figure 17: Hierarchical Software System Figure 18: "Core-Periphery" Software System

In this study we extracted DSMs from portions of codebases composed of C and C++ language files. The

Understand static analysis tool commercially available from Scientific Toolworks, Inc. was used to parse code and

extract dependency information. We chose to add directed links in DSMs when the following types of file-

spanning relationships were encountered:

" The site of function calls to the site of the function's definition

* The site of class method calls to the site of that class method's definition

* The site of a class method definition to the site of the class definition

* The site of a subclass definition to the site of its parent class' definition

* The site at which a variable with a complex user-defined type is instantiated or accessed to the site

where that type is defined. (User-defined types include structure, union, enum, and class.)

The directionality of these arrows was chosen based on the likely direction of change propagation. (Change

actually propagates in the opposite direction of the arrows given the way we have chosen to draw them.) In
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all cases, a change in the entity being "pointed to" had a reasonable chance of requiring a change in the entity

from which the arrow originates. The "to" node is a file which defines an interface, provides functionality, or

defines the structure of data that the "from" node relies upon.
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5.1.2.2 Finding the Indirect Dependencies in a Graph

Once a network of the software architecture is captured, a transitive closure [193, 194] algorithm is run to

identify all direct and indirect links. The figures below illustrate how this is done. Figure 19 and Figure 21 are

network and DSM representations of the same graph. Figure 20 and Figure 22 are the transitive closures

diagrams of that same graph. Note that node "D" depends on "C" directly, and "A" and "B" indirectly. The

transitive closure graph shows potential dependencies in the system. The indirect link from D to A is

important because an unwise design change made to A could break D through the intermediary C.

Unintended side-effects of design choices may be conveyed through intermediaries because indirect links are

harder for the designer to track.
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Figure 19: Simple Network (Direct)
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Figure 21: Simple DSM (Direct)
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Figure 22: Simple DSM (Transitive Closure)

5.1.2.3 Computing visibility metrics for each file

Once the transitive closure graph is computed, visibility scores are computed for each node.
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The following metrics are taken for each node in the direct dependency DSM:

* Fan In (FI): How many other nodes depend upon it directly? Computed by counting the number of arrows

pointing into that node or counting entries (including the diagonal square) down the node's column

in the DSM.

e Fan Out (FO): How many other nodes does it depend upon directly? Computed by counting the number of

arrows pointing out from that node or counting entries (including the diagonal square) across the

node's row in the DSM.

The following metrics are taken for each component from the transitive closure DSM and its nodes:

e Visibility Fan In (VFI): How many other nodes depend upon it directly or indirectly? Computed by counting

the number of arrows pointing into that node in the transitive closure graph or counting entries

(including the diagonal square) down the node's column in the DSM.

e Visibility Fan Out (VFO): How many other nodes does it depend upon directly or indirectly? Computed by

counting the number of arrows pointing out from that node in the transitive closure graph or

counting entries (including the diagonal square) across the node's row in the DSM.

The following metrics are taken for the system as a whole:

e Network Density: A system-wide metric determined by dividing the number of direct links in the

graph by the total number of possible links. Computed by counting the number of dots and diagonal

elements and dividing by the total number of squares.

* Propagation Cost: A system-wide metric determined by dividing the number of direct and indirect

links in the graph by the total number of possible links. Computed by counting the number of dots

and diagonal elements and dividing by the total number of squares.
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To illustrate, Figure 23 and Figure 25 represent the same network with 12 nodes and 47 arcs (including self

referencing arcs), while Figure 27 is its transitive closure. In these examples, node "H" has FI = 3, FO 4,

VFI = 6, and VFO = 6. For the system as a whole, Network density = 47/144 and Propagation cost

81/144.
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5.1.3 Component Architectural Categories: Peripheral, Utility, Control, Core

Once computed, VFI and VFO scores for components across a system can be rank-ordered and plotted to

see their distributions. Figure 29 shows the distribution of visibility scores for one of Iron Bridge's releases.

When systems have a core-periphery structure, these distributions tend to contain "cliffs" demarcating the

boundary between peripheral files and those that are highly connected when indirect links are considered. [79]

In the MacCormack approach, these cliffs are used to partition VFI and VFO scores into "low" or "high"

bins.

Figure 29: Distribution of Visibility Scores and Cutoff Points for a "Core Periphery" Network

Once visibility scores have been computed, and once those scores are classified as either "high" or "low",

each component can be classified as pengpheral, utilfi, contl, or core according to the scheme laid out in Table 1.
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If VFI is and VFO is then it is Description

low low peripheral Peripheral components do not influence and are
not influenced by much of the rest of the system.

high low utility Utility components are relied upon (directly or
indirectly) by a large portion of the system but do
not depend upon many other components
themselves. They have the potential to be self-
contained and stable.

low high control Control components invoke the functionality or
accesses the data of many other nodes. It may
coordinate their collective behavior so as to bring
about the system level function.

high high core Core regions of the form highly integral clusters,
often containing large cycles in which components
are directly or indirectly co-dependent. They regions
are hard to decompose into smaller parts and may
be unmanageable if they become too large.

Table 1: Mapping of Visibility Scores to Architectural Complexity Classification

In this research, we use each file's classification as peripheral, utility, control, or core as an indicator of the

file's architectural complexity. Core files are the most architecturally complex because their high levels of

connectedness indicate that they are in regions of the network that are coupled by large architecture spanning

cycles.

5.1.4 The Relationship Between Hierarchy, Modularity, and MacCormack's Metrics

5.1.4.1 How Visibility Metrics Capture Architectural Complexity

Figure 23, Figure 25, and Figure 27 show a network previously discussed in the literature section showing

system structured as a hierarchy composed of modules. In some ways this DSM incorporates principles of

design put forth by David Parnas, Herbert Simon, and others. [48, 51, 69] In order to understand how these

80



architectural patterns manage complexity and how MacCormack's visibility metrics capture this fact, we will

explore a degenerate case represented by Figure 24, Figure 26, and Figure 28.

Imagine that during maintenance, engineers inadvertently added two additional links (DH and BK) in

violation of design rules. The network density rises slightly from (47/144) or 33% to (49/144) or 34%. DH

causes multiple issues. First, D is interacting with a node that was not previously considered "public" by its

module. Secondly, DH couples two modules that previously had no interaction. These modules can no

longer co-evolve independently. Teams developing the separate modules may not be aware of this fact. It is

possible that H's owner is unaware that D is now dependent upon it. BK is more problematic. It introduces

a long cycle spanning several independent components. Not only does B directly depend upon K, K also

indirectly depends upon B. Any functionality that indirectly depends on B (potentially all of it) now has a

chance of getting into a recursive loop of dependence. Modular isolation of the system has broken down.

Hierarchy has been eliminated because arrows no longer flow in one direction. Homeostasis has been

eliminated. This fact is captured in transitive closure DSM shown in Figure 28. In the degenerate system,

VFI and VFO for all nodes are now at a maximum. Propagation cost of this system has risen from (81/144)

or 56% to (144/144), 100%.

5.1.4.2 How Hierarchy and Modularity Control Architectural Complexity

Hierarchy and modularity are tools that can control complexity and enable certain ilities. When these patterns

are employed judiciously, a system can scale, side effects can be avoided, independent parts can co-evolve,

and the development process can be managed by fallible and boundedly-rational human actors. Networks

connected in these ways are far from random - rather, they are highly indicative of intentional or evolved

order in a system.

To demonstrate this point, 10,000 random DSMs with 12 nodes and 47 arcs (12 on the diagonal) were

generated. These DSMs had the same number of nodes and arcs as the network in Figure 23 (Parnas and

Simon's hierarchy ofmodules from above.) After generation, the transitive closure of each random graph was

81



computed. The propagation cost for the random networks was compared against the propagation cost for

network in Figure 23. Table 2 contains the results.

Network density Propagation cost
Hierarchy of Modules 32.64% 56.25%
Hierarchy of Modules (broken) 34.03% 100.00%
Random network MIN 32.64% 51.39%
Random network MAX 32.64% 100.00%
Random network Mean 32.64% 93.84%
Random network Median 32.64% 92.36%
Random network Mode 32.64% 100.00%
Table 2: Propagation Cost of Structured and Random Networks

Note that the average propagation cost for random networks was above 90 percent, while the propagation

cost for the hierarchy ofmodules was very close to the minimum of the 10,000 randomly generated networks. By

lower-diagonalizing and visually inspecting 50 randomly generated networks with low propagation cost (those

with scores below 60%) we found that lowest scoring architectures were almost fully hierarchical while those

with only one or two small cores had these low scores as well. Hierarchy and modularity seem to control

structural complexity, and this fact is captured by MacCormack's visibility metrics.

It should be noted that MacCormack's classification scheme defines categories that only imperfectly capture

some aspects of hierarchy and modularity. By definition, hierarchies are directed acyclic graphs. By identifying

the largest system-spanning cycle and defining nodes captured that cycle it as "core," we identify a set of files

that are clearly in a-hierarchical regions of the system. Some non-core files are also positioned within

network-cycles, but those cycles tend to be localized rather than system spanning. Localized cycles can

constitute modules that, so long as they are reasonably sized, manage complexity by isolating integrated

functionality. MacCormack's classification scheme also captures some notions of modularity by

differentiating between files that are tightly coupled and loosely coupled. Loosely coupled elements are easier

to evolve and have greater "option-value." By employing a single metrics that imperfectly captures some

aspects of both hierarchy and modularity, we can operationalize the concept of architectural complexity in a

simple (if somewhat crude) manner. If the simple architectural complexity metrics employed in this study

found to be important, subsequent work should explore the link between quality, productivity, and other
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more specialized architectural measures. Examples of other architecture measures worth exploring in future

work include hierarchy measures devised by Luo and Magee [195] and measures of network centrality. For an

in depth review of hierarchy theory and metrics, see Luo's doctoral dissertation. [196] For a good discussion

of modularity metrics, see H61tti-Otto and de Weck. [197]

5.2 Measuring Costs of Software Development and Maintenance

An underlying premise of this work is that architectural complexity can cause significant costs that are

traceable to specific software source-code files. In this study, file-level categories (peripheral, utility, control,

and core) will be used as independent variables in regression analysis aimed at determining the cost of

architectural complexity.

We will explore the relationship between complexity and various forms of cost that are incurred by the

organization during development and maintenance. The following measures of cost are used as dependent

variables in regression analysis:

* Defect correction activity required in files

* Productivity among developers working in different types of files

* Staff turnover among developers working in different types of files

We also use a variety of other file-, developer-, and activity-metrics as control variables in regression analysis.

In order to understand how these costs can be traced to specific software source-code files, we must

understand some things about the workflow of a typical software developer and the tools and databases used

in the development process.

5.2.1.1 The Typical Developer Workflow

In the typical workflow (for a project of reasonable size) a software engineer will interact with both a

"Change Request" system and a "Version Control System." A change request system stores feature requests and
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bug reports. It is used by developers to manage tasks and to track work progress. A version control ystem stores

all versions of the source code and information about the changes that go into it over time. It allows

developers to look at the history and evolution of every file it manages and determine who contributed each

line of code.

Figure 30: Primary Developer Workflow

To illustrate: Imagine that a developer named "Jill" has undertaken the task of making a change to the

software. Jill chooses a task to work on from a list of tasks in the change request system. (If the task she

wishes to work on is not in the system, she creates a new entry.) She engages in planning activities

appropriate to the task such as requirements gathering, functional design, architectural design, and

communication with other people and teams. When Jill is ready to begin coding, she creates a copy of the
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most recent version of the code from the version control system's central repository. She makes a local copy

- known as a "sandbox" that she is free to modify, recompile, and test without interfering with the work of

others. Jill implements the required changes by modifying existing source code files or creating new ones.

When Jill believes the task is complete, she submits her new and modified files to the version control system

for inclusion in a new "most recent" version of the code. The version control system compares Jill's locally

modified files against the current version and and does two things:

* Creates changes which store information about specific lines that must be added-to and removed-from

each modified file to incrementally update it from one version to the next.

" Inserts those changes into the version control system repository so that the next person to create a

sandbox will obtain Jill's new version of the code.

Once this process is complete, Jill will modify the change request to indicate that the work has been

completed and will begin the process anew on her next task.

5.2.1.2 Historical Data Available in Change Tracking and Version Control Systems

Each request stored in the typical change tracking system contains many fields, some of which can be

extracted to enable this research:

* A unique identifier

* A means of knowing whether a request is to implement a feature, fix a bug, or perform some other

task (such as refactoring)

* Dates on which a change request was created and the change was completed

e The name of the individual who performed the task

Logs in the version control system will generally store the following useful information about every change

made to a file:
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e A unique identifier

* The name of the file being changed

* The number of lines of code being added and deleted (Note that changing a single line will appear as

one line added and one line deleted.)

* The date of the change

* The name of the individual that submitted the code

5.2.1.3 Required Linkage Between Changes and Change Requests

The following diagram shows those data fields that are generally stored in change request systems and version

control systems that can be used for our research purposes:

Change Tracking Required Version Control
System Mapping between System

chan requests
and file patches

Change Requests File Changes
Change request id File change id
Type (Bug, Task, Feature) File name
Severity (if Bug) Lines of code added
Creation date Lines of code deleted
Completion date Change date
Developer login Developer login

Figure 31: Change Tracking, Version Control, and Integration Between the Two

One additional step is required of "Jill" to enable this analysis. It must be possible to link specific changes to

specific change requests so that we can determine which changes were intended to fix bugs, and which were

intended to implement features. Although every other piece of data described above is available for most

software development projects, this linkage between version control history and change request history is not

always present. To enable our historical analysis, Jill must have included unique identifiers associated with the

change requests she works on in the version control logs for the changes she submitted so that the two could

be associated.

86



5.2.2 Means of Capturing Complexity and Cost Data

Table 3 shows the type of file-level information that was assembled for use in analysis. Table 4 shows the

type of developer-level information that was used in analysis. This data was obtained by mining corporate

version control systems, change tracking systems, human-resources databases, and source code.
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Per File Development Activity Metrics File Based Metrics
(captured for a range of dates) (captured from a snapshot of the source code)
Number of changes that went into a file Architectural complexity metrics
Number of changes to fix bugs in file McCabe cyclomatic complexity
Number of non-bug changes in file File size (lines of code)
Lines of code (LOC) added and removed File age (in years)
LOC added and removed to fix bugs File language (C++, Java, etc.)
Non-bug LOC added and removed File purpose (product vs. test)
Table 3: File-Based Metrics Captured

Per Developer Activity Metrics Developer Metrics

(captured for a range of dates) (captured on a specific date)
Number of changes made to files Time with company (in years)
Number of file changes to fix bugs Is manager?
Number of non-bug file changes Department
Lines of code (LOC) added and removed Role (Developer, Quality Engineer, Consultant)
LOC added and removed to fix bugs Hire date
Non-bug LOC added and removed Termination date
Table 4: Developer-Based Metrics Captured
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Over the course of this research, software was developed to extract this information from multiple sources

within a firm, insert it into a relational database, query the database to create tables for use in statistical

analysis, and to perform statistical tests. Figure 32 shows a simplified diagram of the infrastructure that was

developed during the course of this research:

Figure 32: Infrastructure for Extracting, Relating, and Analyzing Data
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6 Research Setting

This study set out to quantitatively measure the link between architectural complexity (the complexity that

arises within a system due to a lack or breakdown of hierarchy or modularity) and a variety of costs incurred

by a development organization. A study was conducted at a successful commercial software development

firm within a large codebase. Measures of architectural complexity were taken from their software over 8

successive versions to enable longitudinal analysis. Multiple significant cost drivers including defect density,

developer productivity, and development staff turnover were measured as well by extracting information

from software version control, change tracking, and human resource databases. The link between cost and

complexity was explored using a variety of statistical techniques. This section describes the organization

being studied, the portions of their codebase that were chosen for study, and the methods used to extract and

clean the data. It concludes by providing some descriptive statistics on the complexity of the code being

studied.

6.1 Organization Under Study: Large Scale Commercial Software Firm

The software under examination in this study is a portion of a very large code-base owned by a successful

commercial firm. Over time, thousands of professionals wrote software consisting of hundreds of thousands

of files and tens of millions of lines of code in many different languages. Hereafter, we will refer to the firm

by the pseudonym "Iron Bridge Software." This body of code forms a product platform - some products are

required for others to run. Iron Bridge organizes development activity around a fixed release schedule.

Within this cadence, teams have coordinated periods for planning, feature development, and quality control.

Each development cycle concludes with the commercial release of a new version of the software to

customers.

Information was extracted from software source code for eight successive released versions and information

about periods of development activity leading up to each release. Architecture metrics were extracted from

source code for each version. Information about development costs the organization incurred were extracted

91



from version control systems, change tracking systems, and human resource databases. The cost of

complexity was explored by relating differences in complexity to differences in development costs across the

codebase.

6.2 The Software Development Process at Iron Bridge

Iron Bridge's products are developed by hundreds of software professionals all working to improve the same

codebase. Product development teams within Iron Bridge exercise a lot of independence when working in

their regions of the source-code, and coordinate when they meet at system interfaces. These teams leverage

centrally managed tools and processes however. The code-base is stored in a common version control

system, compiled using a common build system, and tested using a common regression-testing framework.

Teams use a shared change tracking system, version control system, code validation tools, and common

project management processes.

Figure 33 depicts the timeline of development activities for one release. At the outset of a release there is a

period of time for managerial goal setting and development planning. This is followed by a period of active

development. Two important dates toward the end of this period include a deadline for completing product

enhancements and a deadline by which all code changes are supposed to be completed. Following code-

freeze, developers move on to planning for the next release. Some bugs may continue to be found and fixed,

but these late fixes have the potential for negative side effects, and thus receive heightened scrutiny.

Fixed Development Window
Planning Development New Feature Last New
and Goal Begins Completion Code Version

Setting Date Change Ships

-----'I I---------------------
Prev Devel Window Next Devel Window

Figure 33: Fixed Development Window
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Figure 34 shows a simplified picture of the workflow for a developer at Iron Bridge. In the lower left we find

a customer receiving a new version of the software. This customer has unmet needs, encounters limitations,

or discovers defects in the product. Through various planning processes, marketing activities, and technical

support channels, customer needs are translated into prioritized feature requests and bug reports stored and

tracked in the change tracking system. Requests are also entered by employees who need to track their own

work, encounter bugs, or need functionality developed by other teams. They enter information about features

they wish to develop, bugs they need to fix, and refactoring that should be done.

Figure 34: Primary Developer Workflow and Release Cycle

Developers use the change tracking system to monitor the progress of their work. Change requests are

assigned owners and passed between people. They contain information about whether a request is to correct

a bug, implement a feature, or do some other task such as refactoring. Each change request can put into a
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number of states indicating development progress beginning with "New" and ending as either "Completed"

or "Discarded."

Iron Bridge was chosen for investigation because it has conducted a good natural experiment. Because teams

at Iron Bridge have independent control over software but centralized calendars and tools, the company has

done a number of things that enable this research. First, the effect of process, tools, and schedule are

controlled for. The impact of architecture on costs incurred by the organization when developing it can be

isolated in a reasonable manner. Secondly, because developers within Iron Bridge use common tools,

databases, processes and terminology, common measures related to productivity and quality could be

established across teams. Thirdly, Iron Bridge's history of data-collection and for long periods without

changes in its tooling allowed for longitudinal analysis. Fourthly, because Iron Bridge is a commercial firm

we have the opportunity to study not only the software, but also the developers. Many research studies in

this field look at open-source systems. Such studies can look at issues related to quality but cannot look at

productivity because they cannot make a "40 hour assumption." Here we can measure the productive output

of a large number of individuals and assume that they have worked a reasonably similar amount of time. No

such assumption can be made when looking at open-source projects. In addition, access to human-resource

databases allows us to control for time with the company and managerial status. Finally, and perhaps most

crucially, Iron Bridge maintains integrated change tracking and version control systems. Policy dictates that

developers include the identification number of specific features or bugs being tracked through the

development pipeline when submitting changes into the version control system. Tooling is designed to

support this workflow and various checks are put in place to enforce the policy. As a result, the link between

feature requests, bug reports, and the code that is submitted to implement them is largely intact a substantial.
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6.3 Data Selected for Use in Studies

In order to study the impact of architectural complexity on various costs, we collected samples of source-

code files, samples of software developers who worked in those files, and a sample of changes that those

developers submitted to files over time.

6.3.1 Software Source Code Files and Developers Chosen for Study

Iron Bridge's codebase consists of code written in multiple languages including C++ and Java. The C++

portion of this codebase was chosen for our study. The C++ portion of the codebase was chosen for several

reasons. First, the C++ codebase was large enough that the number of source files, amount of development

activity, and number of developers led us to believe that statistically significant results could be obtained for

this study. Secondly, the C++ portion of the codebase contains a substantial portion of the historical

development activity. Third, because C++ is a compiled language (rather than an interpreted language in

which symbols are resolved at runtime) static analysis tools used to extract the dependency structure of the

codebase could do a reasonably good job of accurately representing the architecture of the system. Fourthly,

C++ code is the heart of the overall system. It implements the most important functionality and algorithms.

In the defect density analysis between 9937 and 13941 C++ files were examined for each of the 8 releases

studied. The overall sample consists of 94364 C++ file-releases, including multiple observations of many of

the same files. The average file in the sample is 4.2 years old and contains approximately 550 lines of code.

During the development periods under study, the number of files in the sample grew by approximately 40%

and the number of lines of code grew from 5.5 to 7 million lines. Figure 35 and Figure 36 show DSMs for

releases 1 and 8. During this time new utility bands appeared and new modules were added, but the overall

structure remained remarkably stable despite its growth.
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Figure 35: DSM for Release 1 Figure 36: DSM for Release 8

The developer productivity analysis included 178 individuals in its sample. A panel-data approach was

employed in that analysis. Developer data was taken on a per-release basis for each of the 8 releases. In total,

478 developer-release observations were included in that analysis. In the analysis of staff turnover, we

included 108 individuals in the sample. The turnover analysis did not use a panel approach. In that analysis,

information from multiple developer-releases was pooled to give aggregate information for each developer.

6.3.2 Procedures Used To Clean Data Samples

Multiple heuristics were devised to determine if specific files, changes, or developers should be removed from

consideration in regression models. These heuristics were devised by examining hundreds of outlier files and

changes, and by speaking with developers about potential sources of data or validity problems. Procedures

were written to modify the database accordingly.

6.3.2.1 Rules Used to Include or Exclude Files From Consideration in Defect Analysis

Files were removed from consideration for a variety of reasons. In order to be included in the sample:

* Files had to be part of a product sold to customers. Steps were taken to remove files that

implemented unit tests, system tests, or non-shipping infrastructure or tools code.
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" Files had to be manually written by human developers. Steps were taken to remove code that

appeared to be automatically generated rather than written. (Files were removed from the sample if

they were abnormally large or if the submission patterns indicated that they were being completely

replaced by each submission rather than being incrementally updated.)

e Header files were removed because their contents typically consist of interface descriptions rather

than implementation details, and because they are generally much smaller than the files containing

executed code. (Header files were present in the DSM during the transitive closure operation and

were removed from the sample afterward. This allowed transitive dependency paths to be revealed.)

6.3.2.2 Rules used to Include or Exclude Changes From Consideration in All Studies

Information about changes submitted into the version control system was used to determine the amount of

development that went into one file or that was performed by one individual. Procedures were devised to

remove questionable changes from this sample. This following set of rules was used to determine which

changes to source code files would be excluded from consideration:

e If a single change during a development window added as many lines of code as existed in the file at

the time of the release, the change was removed from consideration. When examining these very

large submissions, it became clear that the vast majority were caused either by automated changes in

file indentation or by the submission of generated (rather than manually written) code.

" If the number of changes submitted by a single individual on one day was above the 99t percentile

(135), all submissions by that individual on that day were omitted. While examining these cases it

became clear that these "activity spikes" were caused by individuals making automated changes to a

large number of files. Examples include submissions in which copyright notices were updated in

every source file or small formatting changes were applied across the code.

* If the number of lines of code (LOC) submitted by a single individual on one day was above the 99th

percentile (7800), all submissions by that individual on that day were removed from consideration.
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When examining these cases, it became clear that these cases involved the renaming of large files or

the movement of large pieces of functionality from one file to another.

* If the number of lines of code added and deleted relative to the size of the file is above the 99th

percentile (lines added and lines deleted both more than 4 times the number of lines in the file), all

changes to that file during the release were removed from consideration. In addition, the file itself

was removed from the sample. Files with extremely high levels of code churn often contained

automatically generated code - code in which any change to the generation process creates an

entirely new file rather than incremental changes.

* If a file was above the 99th percentile on size (3600 lines) all of its changes were removed from the

sample of changes and the file itself was removed from the sample of files.

6.3.2.3 Rules used to Include or Exclude Developers From Consideration in Productivity and
Turnover studies

The following method was used to determine if a developer-release would be included in the sample:

* A person had to have a title indicating a primary responsibility for developing code and be in a

department responsible for developing code in the shipping product. This excludes "testers" who

also developed code, but were primarily responsible for creating unit or system tests. It excludes

people whose primary responsibility was developing and maintaining internal infrastructure and

tools. It also excludes consultants and individuals in training programs.

" A developer had to be employed for the entire duration of a development window to be considered

for that time-period.

* For inclusion in the productivity analyses, a developer had to submit at least one change to a core file

during every release they would be included in as a developer-release data point. For inclusion in the

turnover analysis, a developer had to submit at least one core change during any of the 8 releases

studied.
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" In the productivity analysis, a developer had to have submitted more than 50% of their lines of code

into C++ files represented in the DSM during a release for inclusion. In the turnover analysis, a

developer had to submit more than 50% of their lines of code into files in DSMs over the entire time

period. Because many developers wrote code in other languages in addition to C++, it was important

to limit the developer sample to those who were most directly impacted by the architectural

complexity being examined.

e In the productivity analysis, a developer had to be responsible for coding at least 10 features or bug

fixes that were tracked in the change tracking system during every release they were included. In the

turnover analysis, a developer had to code at least 10 tracked changes over the eight-release window.

Because it is important to differentiate between feature development and bug-fixing activities in these

studies, we only include individuals with sample sizes that allow us to reasonably estimate the

proportion of their work dedicated to each activity.

* At least 70% of a developer's changes must have been deemed "valid" by the procedure outlined

above. Developers with more invalid changes were removed from the analysis.

6.4 Structure and Complexity of Files in the Sample

Figure 37 shows DSMs and the distribution of visibility scores for release 7. It illustrates the means by which

each C++ file in the sample was classified as peripheral, utility, control, or core. The upper-left DSM is

sorted according to the directory structure. Bands of utility files are clearly visible, as are modules along the

diagonal. The upper-right DSM is lower-diagonalized. The small box in the upper left contains utility files,

followed by core, peripheral, and control file regions. The bottom two panels plot the visibility scores for

files in a sorted order. When this is done, the bimodal nature of these visibility scores is apparent. Iron

Bridge's C++ codebase has a core-periphery rather than a hierarchical structure. These charts also indicate

how files were assigned architectural complexity classifications. The prominent ridge in the middle of each

graph was chosen as the demarcation line between "low" and "high" scores for purposes of binning. Once

files were assigned to "low" or "high" buckets on both visibility dimensions, classification was
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straightforward. Table 5 shows the number of files and the number in each McCabe and architectural

complexity classification for each of the 8 releases. Note the growth of the codebase and of the size of the

core through time.
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Figure 37: Release 7 DSMs and Visibility Plots
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Table 5: File Count Broken Down by Complexity Classification

Release 1 2 3 4 5 6 7 8
Total number of files

Architectural complexity
classification

Perdpheral

Utility

Control

Core

Component complexity
classification

McCabe Low

McCabe Mid

McCabe High

McCabe Very High

Mean McCabe Score

9937

2691

543

3262

3441

5973

2076

1448

440

10447

2305

602

3503

4037

6321

2174

1506

446

10671

2158

636

3371

4506

6534

2206

1499

432

11576

2193

915

3564

4904

7282

2336

1506

452

12186

1835

679
3923

5749

7702

2436

1586

462

12311

2981

780

2704

5846

7904

2412

1567

428

13295

1975

685

4127

6508

8691

2565

1611

428

13941

1901

718

4461

6861

9241

2645

1616

439

14.32 13.92 13.50 12.98 12.80 12.42 11.92 11.51



7 Result 1: Link Between Architectural Complexity and Defects

In our first analysis we explore the hypothesis that architecturally complex files experience more defects. We

explore the relationship between the architectural complexity of individual files and the amount of bug-fix

development activity that occurs in those files. We control for file size, age, and non-bug related code-churn,

and McCabe cyclomatic complexity.

7.1 Descnptive Statistics on Files and Complexity

For each of the 8 releases studied, between 9937 and 13941 C++ files were examined. While the last release

contained nearly 14,000 files, roughly 2,000 files were created or modified during any given release. These

2,000 files were changed approximately 15,000 times during each release. Those 15,000 changes contained

approximately 600,000 line additions or deletions. The number of changes and lines affecting files is highly

skewed. Table 6 shows activity during each release. Table 7 shows a variety of mean values related to file size,

change size, and activity. The average file had 49 lines changed in it during the typical release cycle. 33 of

those lines were changed to implement features and do other tasks, while 16 were changed to fix bugs.

103



Table 6: Measures of Development Activity During Each Release
Release 1 2 3 4 5 6 7 8
Total number of files 9937 10447 10671 11576 12186 12311 13295 13941
Number of files modified 2139 2844 3778 3414 3649 3452 3702 3150

for features & tasks 1462 2228 2840 2584 2834 2755 2882 2453
for bugfixes 1356 1502 1980 1847 1980 1759 2046 1612

Number of changes 6019 7728 10343 10515 10601 10085 11439 8203
for features & tasks 3153 4643 6210 6630 6273 6101 6473 5055
for bug fxes 2866 3085 4133 3885 4328 3984 4966 3148

Number of lines in files 5627014 5953113 6047870 6277627 6772103 6891070 7096692 7239940
Number of lines modified 360403 509704 632241 645008 713688 596700 674741 504823

for features & tasks 198508 332628 439290 445008 485146 407988 445833 350248
for bug fixes 161895 177076 192951 200000 228542 188712 228908 154575

Table 7: Averages for File Size, Change Size, and Development Activity During Each Release
Release 1 2 3 4 5 6 7 8
Mean file age 3.70 3.78 3.94 4.12 4.21 4.37 4.57 4.61
Mean file size 566.27 569.84 566.76 542.30 555.73 559.75 533.79 519.33
Mean change size 59.88 65.96 61.13 61.34 67.32 59.17 58.99 61.54
Mean changes per file 0.61 0.74 0.97 0.91 0.87 0.82 0.86 0.59
for features & tasks 0.32 0.44 0.58 0.57 0.51 0.50 0.49 0.36
for bug Exes 0.29 0.30 0.39 0.34 0.36 0.32 0.37 0.23
Mean lines changed per file 36.27 48.79 59.25 55.72 58.57 48.47 50.75 36.21
for features & tasks 19.98 31.84 41.17 38.44 39.81 33.14 33.53 25.12
for bug Exes 16.29 16.95 18.08 17.28 18.75 15.33 17.22 11.09



7.2 Modeling Architectural Complexity and Defects

Our first proposition is that all else being equal, files with more architectural complexity will have more

defects. In order to analyze the determinants of defects in a file, we construct two statistical models using

the C++ source-code file as the unit of analysis. In the first, a count of the number of changes submitted

to fix defects was used as the dependent variable. In the second, the number of lines of code modified

(added and deleted) to fix defects was used as the dependent variable. The independent variable under

study was an indicator of whether each file was categorized as "peripheral", "utility", "control", or "core"

according to the previously described architectural complexity classification devised by MacCormack,

Baldwin, and Rusnak.

A variety of controls were included for each file including measures of activity that was not bug related

(e.g. the addition of new features), a measure of the file's size, a measure of the file's age, and the McCabe

cyclomatic complexity metric designed to measure the complexity contained within the file.

Parameters for both models were estimated using a Negative Binomial regression due to the count nature

of the dependent variable and the fact that the conditional data is overdispersed, invalidating the

assumptions of the simpler Poisson model. The Zelig framework was used to run regressions and

subsequent simulations to estimate parameters values. [198-201] Data for files from each of the 8 releases

was combined, and a dummy variable was included to indicate the release. Nearly 100,000 data points

were used in these regressions. Each observation point represents a file-release version, including

approximately 12,000 files from each of 8 releases.
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Table 8 lists variables included in models in which the number of changes or lines of code required to fix

bugs in a file is predicted.

Table 8: Variables Included In Statistical Models Predictng Defect Proneness
Changes submitted Dependent Count The-number of changes that were submitted to
to fix bugsf Variable *,'bugs i a development widow. If a change

disociatedich tftpleghange tquests,
o4 iyadme of which -were to fi bugsthen only
a portiont of the change willcount as a bug fix.

Lines of code Dependent Count The number of lines changes associated with
changed to fix Variable bug fix changes. If a change is allocated
bugs proportionally to bug fix and non-bug fix

categories, then this line count is allocated
proportionally as well

Changes submitted Control Count The number of changes thatwere submitted for
to implement other reasons than to fix bugs. These include
features or do changes to implement new features or perform
other non-bug tasks such as refactoring. If a change was
related tasks associated with multiple change request, only

some of which were not to fix bugs, then only a
fraction of the change will count here.

Lines of code Control Count The number of lines changed associated with
submitted to non-bug fix changes. If a change is allocated
implement features proportionally to bug fix and non-bug fix
or do other non- categories, then this line count is allocated
bug related tasks proportionally as well.

Number of lines of Control Count The number of lines of code in a source code
code contained in file in the shipped (released to customers)
file version of that file.

Age of file Control Float The age of the file (in years) on the date that of
release to customers. Computed by subtracting
the date of the file's first change from the
release date.
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Release index Control Categorical Each file observation has dummy variables
indicating which of the 8 development windows
the observation was made for.
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7.3 Regression Models

Table 9 shows the result of regressions predicting the number of defect correction changes that go into a file

over the course of a release while Table 10 shows the result of regressions predicting the number of lines

of code changed tofix defects in a file over the course of a release. Both sets of models behave similarly. As

one might expect, the number of bug fixes in a file is correlated with the size of the file and the number

of non-bug changes. Our intuition about the effect of a file's age is also confirmed. Older files have

lower defect density. Also note that the number of defect changes submitted to a file generally increases

with McCabe's cyclomatic complexity, but goes down as one moves from files in the "high" range (21-50)

to the "untestable" range (>50). This discrepancy is eliminated in the models predicting the number of

lines of code changed to fix defects. A few other control variables not shown in the tables were tested as

well."

Note that our first proposition holds. Files with high architectural complexity (those considered "core")

have defect densities that are significantly higher than files that are "peripheral" and "utility" and

somewhat higher than files classified as "control" files. All results are significant at the 0.1% level.

n When direct fan-in and fan-out are included in regression models fan-out is significant and fan-in tends
not to be. These variables are not included in models presented here because they strongly correlate with
visibility scores. Even when they are included, the statistical results presented below still hold.
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Table 9: Predicting Number of Changes in a File to Fix Bugs. (Negative Binomial Model)
Parameter Model 1: Model 2: Model 3: Model 4:

controls cyclomatic architectural combined
complexity complexity

LOC in file 0.00051873 *** 0.000325008 *** 0.000435369 *** 0.000232755 ***
Non-bug changes 0.47845193 *** 0.456561328 0.432710048 *** 0.407008559
File age -0.05603372 *** -0.067722601 *** -0.052193625 *** -0.065597024 ***
Cyclomatic: mid 0.621477523 *** 0.626102941 ***

Cyclomatic: high 0.792611777 *** 0.851977307
Cyclomatic: very high 0.607481099 *** 0.727127107 ***

Architectural: utility 0.303542216 *** 0.396496711 ***

Architectural: control 0.898747327 *** 0.860218904 ***

Architectural: core 1.186554887 *** 1.226177521 ***

Residual Deviance 40809 41387 41004 41672
Degrees of Freedom 94353 94350 94350 94347
AIC 108713 107756 107242 106181
Theta 0.28199 0.30896 0.31141 0.34638
Std-err 0.00446 0.00509 0.00507 0.00591
2 x log-lik -108689 -107726.013 -107212.489 -106144.866
N = 94364 files observations (from 8 releases)
Dummy variables for each of 8 releases omitted.
Significance codes: .<0.1, *<0.05, **<0.01,
***<0.001



Table 10: Predicting LOC Changed in a File to Fix Bugs. (Negative
Parameter Model 1: Model 2:

controls cyclomatic
complexity

Binomial Model)
Model 3:
architectural
complexity

LOC in file 0.00156486 *** 0.0011712 *** 0.00143183 *** 0.00104115 *
Non-bug lines change 0.00372536 *** 0.00353601 *** 0.00355368 *** 0.00335322
File age -0.10050305 *** -0.11730352 *** -0.1026859 *** -0.11853279 ***
Cyclomatic: mid 0.774729 *** 0.70392074 ***
Cyclomatic: high 0.93363115 *** 0.95513134
Cyclomatic: very high 0.91923347 *** 0.96444595 ***

Architectural: utility 0.2018549 * 0.35797922 *
Architectural: control 0.94111466 *** 0.84721344 ***

Architectural: core 1.14823521 * 1.14683088 ***

Residual Deviance 30370 30418 30428 30475
Degrees of Freedom 94353 94350 94350 94347
AIC 227861 227512 227403 227079
Theta 0.030212 0.030692 0.030836 0.031295
Std-err 0.000285 0.00029 0.000291 0.000295
2 x log-lik -227837.302 -227482.025 -227373.406 -227042.861
N = 94364 files observations (from 8 releases)
Dummy variablesfor each of 8 releases omitted.
Significance codes: .<0.1, *<O.05, **<0.01,
***<0.001
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7.4 Interpretation ofResults

Simulations were run to explore effect sizes and look at the response seen in outcome variables in

response to changes in the independent variables. In the following simulations, controls were set to their

mean values. Lines of code in a file was set to 550, file age was set to 4.2 years, the number of changes

submitted to files to implement features and do other non-bug related tasks was set to 0.47, and the

number of feature & task lines of code churn was set to 33. Table 11 shows the result of 16 simulations

that tested each possible combination of McCabe and architectural complexity classifications to determine

the effect of both forms of complexity on the number of bugs appearing in a typical file. Figure 38 and

Figure 39 contain plots of the simulation results shown in Table 11.

Table 11: Expected Value For the Number of Bug-Fix Changes in the
"Typical" File

Architectural

Peripheral Utility Control Core
McCabe Low 0.059 0.087 0.139 0.200

(0.007) (0.011) (0.016) (0.023)
Mid 0.110 0.163 0.259 0.374

(0.013) (0.021) (0.030) (0.044)

High 0.138 0.205 0.325 0.469

(0.017) (0.026) (0.038) (0.055)
Very high 0.121 0.181 0.287 0.414

(0.015) (0.024) (0.035) (0.051)
Note: standard deviation in parentheses
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Figure 38: Expected Number of Bugs Fixed in a File (1)
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Figure 39: Expected Number of Bugs Fixed in a File (2)

Both architectural and McCabe's cyclomatic complexity seems to matter a great deal. Note that files with

high McCabe scores are expected to have 2.1 times as many bug fixes as files with low McCabe scores.

Changes in architectural complexity have an impact of roughly the same order of magnitude. When

compared against the periphery, utility files have 48% more defects, control files have 2.4 times as many

defects, and core files have 3.4 times as many defects. When both types of complexity are considered in
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combination, the effects are quite large. A core file with a high McCabe score is expected to have 8 times

as many defects as a peripheral file with a low McCabe score.

Because changes vary dramatically in size, simulations were run to estimate the expected number of lines

of code changed to fix defects as well. Table 12, Figure 40, and Figure 41 show the results of these

simulations.

Table 12: Expected Value For the Number of Lines Submitted to Fix Bugs
in "Typical" File

Architectural

McCabe Low

Mid

High

Very high

Peripheral

2.220

(0.366)

4.490

(0.756)

5.776

(0.993)

5.853

(1.141)

Utility

3.183
(0.563)

6.441

(1.166)

8.276
(1.524)

8.379

(1.711)

Control

5.178

(0.844)

10.470

(1.737)

13.473

(2.286)

13.658

(2.630)

Core

6.985

(1.130)

14.132

(2.336)

18.182

(3.080)

18.413

(3.562)

Note: standard deviation in parentheses
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Figure 40: Expected Number of Lines to Fix Bugs in a File (1)
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Figure 41: Expected Number of Lines to Fix Bugs in a File (2)

The overall picture remains similar. Core files are expected to have 3.1 times as many lines changed to fix

bugs as peripheral files and files with high McCabe scores are expected to have 2.6 times as many bug fix

lines as those with low McCabe scores. All else equal, core files with very high complexity are expected to

have 8.3 times as many lines changed to correct defects as peripheral files with low McCabe scores.
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8 Result 2: Link Between Architectural Complexity and
Productivity

In our second analysis we explore the hypothesis that when developers work in architecturally complex

files their productivity is impaired. We explore the relationship between the fraction of lines of code an

individual contributes to "core" files during a release and their total number of lines of code produced

during that release. In these models we control for a variety of other factors that could each be

considered alternative explanations for why a developer's productivity may have declined. Controls tested

include a developer's time with the firm, managerial status, fraction of activity working in new (rather

than legacy) code, faction of activity spent fixing bugs, and fraction of activity working in files with high

McCabe Cylomatic complexity. The goal of these models is to determine if architectural complexity has a

significant impact on the productivity of developers, even when weighed against these alternative

explanations.

8.1 Descriptive Statistics on Developer Productivity

The sample of developers used to explore productivity included 178 people who wrote a majority of their

code in the C++ portion of Iron Bridge's codebase. Because 8 releases were measured, developers had

the opportunity to appear in the dataset up to 8 times. Due to repeats, this sample consisted of 478

distinct developer-release observations for use in panel-data analysis. The sample included 388

observations of individual contributors and 90 observations of managers. The median amount of time a

developer-release had been with the company was slightly over 4 years. Over the course of 8 releases, the

developer-releases observed produced nearly 2 million lines of code as measured by the addition and

deletion of lines in file changes. Of these 2 million lines produced, 1.1 million were created to implement

features or perform some other non-bug related task such as refactoring. 800,000 lines were produced to

fix bugs. Table 13 shows the number of developers in each sample, information about their tenure and

managerial status, and information about the lines of code they produced on average to implement

features and fix bugs.
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The median developer produced 3,200 lines of code per release, while the mean developer produced

4,000 lines changed over the course of a release. Productivity between individuals was highly skewed.

The top quartile has approximately 10 times the productivity as the bottom quartile. (This is a striking

but generally understood phenomenon.)

Table 14 breaks down development activity by the type of work being performed (feature work vs. bug

fix) and the location of that work. Approximately half of the lines coded are submitted to new files and

half to legacy files. One third of activity takes place in files with McCabe scores of high or very high. Three

quarters of activity occurs in core files.
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Table 13: Developers and Activity in Each Release

Release 1 2 3 4 5 6 7 8
Developers in sample

number ofmanagers

number ofind. contributors

Mean time with company

Changes produced per developer

Lines produced per developer

for features & tasks

for bug Exes

35 46

8 9
27 37

4.5

69

3357
1233
2118

4.5

79
4214

2168
2038

59
15
44

5.2
87

4443
2279
2154

67
13
54

4.8
70

3681
2231
1440

64

12

52

4.7

86
4967
3226
1735

67
13
54

5.5
82

4406
2867
1531

69
12
57

5.9
69

3361
1838
1517

71
8

63
5.5
68

3676
2260
1410



Table 14: Activity For the Average Developer by Task and Location in Codebase For Each Release
Release 1 2 3 4 5 6 7 8
Developers in sample 35 46 59 67 64 67 69 71
Lines produced per developer 3357 4214 4443 3681 4967 4406 3361 3676
C++ lines produced per developer 2471 3030 3160 2784 3622 3261 2582 2763
Type of work

for features & tasks 1233 2168 2279 2231 3226 2867 1838 2260
for bug fixes 2118 2038 2154 1440 1735 1531 1517 1410
% lines for bug fixes 63% 48% 48% 39% 35% 35% 45% 38%

Age of file

old file (>2 years) 2006 2235 2104 1704 2420 2204 1575 1791
new file (<2 years) 1319 1882 2274 1951 2518 2162 1771 1828
% lines in new files 39% 45% 51% 53% 51% 49% 53% 50%

Component complexity

low McCabe (< 21) 1901 2550 2742 2428 2737 2729 2166 2198
high McCabe (>= 21) 1354 1509 1614 1215 2171 1608 1148 1407
% lines high McCabe file 40% 36% 36% 33% 44% 37% 34% 38%

Architectural complexity

peripheral file 241 47 142 112 102 147 130 20
utility file 33 12 8 58 86 73 21 28
control file 609 402 737 733 761 614 435 736
core file 1511 2510 2242 1856 2635 2392 1971 1976
% lines in core file 61% 83% 71% 67% 73% 73% 76% 72%



The histograms in Figure 42 and Figure 43 show the distribution of developer contributions to files with

high McCabe complexity scores (those >20) and files with high architectural complexity (those in the

core). Note that over 200 developer-releases make above 90/ of their contributions to core files.
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Figure 42: Histogram of Activity in High Figure 43: Histogram of Activity in Core
McCabe Files

8.2 ModelingArchitectural Complexity andDeveloper Producdvity

Our second proposition is that architectural complexity negatively impacts productivity. In order to

analyze the determinants of developer productivity, we construct three statistical models using the

software developer as the unit of analysis. In the first model, the dependent variable is the total number

of lines produced by an individual to implement features or do other non bug-related tasks (the number

of bug-fix lines is included as a control). In the second model, the dependent variable is the number of

lines of code produced by that individual to fix defects (the number of lines that person produced for

purposes other than to fix bugs is included as a control). In the third model, the dependent variable is the

total number of lines of code produced by an individual during a given release window for features, bug

fixes, and other tasks (with the percentage of lines dedicated to bug-fixes is included as a control). The

independent variable under study in all three sets of models is the percentage of lines a person submitted

to "core" files. This measure is designed to estimate the amount of work the individual does in files with

high levels of architectural complexity.
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The purpose of the first model is to determine how productive individuals were when implementing

features or doing other non-bug related tasks in files with varying levels of architectural complexity. The

second model is used to estimate how productive individuals were while fixing bugs in files with different

levels of architectural complexity. The purpose of the third model is to determine the impact of

architectural complexity on the overall productivity (in terms of total lines produced) of the individual.

In each of these models, we use a panel-data approach that aims to control for individual differences in

developer productivity. Dummy variables are included for each of the 8 releases and each of the

individual developers. By including these dummy variables, we construct regressions that capture changes

in productivity due to complexity within the individual rather than between them. Put another way, these

regressions are designed to determine if individuals were less productive during releases during which

they worked in more complex code rather than to determine if a group of people working in more

complex code is less productive than a group working in less complex code. (Even if the former

statement is true, the latter may not be the case if highly skilled developers are disproportionately

allocated to the core.)

A variety of controls were included for the individual including length of employment, managerial status,

the amount of work done in new (rather than legacy) files and amount of work done in files with high

levels of McCabe cyclomatic complexity.12

Parameters for all models were estimated using a Negative Binomial regression due to the count nature of

the dependent variable and the fact that the conditional data is overdispersed, invalidating the

assumptions of the simpler Poisson model. The Zelig framework was used to run regressions and

subsequent simulations to estimate parameter values. [198-201]

12 Control variables representing the proportion of lines submitted to files with "high" direct fan-in and
direct-fan out were not included due to the fact that they are highly correlated with visibility scores and
because the extreme levels of skew in their distributions (the distribution of fan-in scores fit a power-law
distribution for instance) make it difficult to obtain or interpret results. Due to the highly skewed nature
of the data, the sample of files with "high" direct visibility scores is insufficiently small.
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The following table lists variables used in the three sets of models:

Lines of code Dependent Count The number of lines of code produced by a
produced to fix Variable developer to fix bugs during a release window.
bugs If a change was associated with multiple

change requests, only some of which were to
fix bugs, then only a portion of the change will
count as a bug fix. The number of lines of
code in a change will be allocated
proportionally based on the proportion
allocated to bugs and non-bugs.

those chAngesft14 led

Years employed Control Float Th ie i employed (in years) of the developer
on the date of the software release. Computed
by subtracting the developer's hire date from
the release date.

Is manager? Control Boolean Boolean variable. indicating whether a
developer is a nmnae on the release date.

Percent of lines Control Percent A file is considered to be a "new file" if it is
submitted to new less than two years old. File age is computed
files by subtracting the date of the file's first change

from the release date. The percentage of lines
submitted to new files is computed by
determining the proportion of lines produced
by a developer during a release that modified
new files.
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Percent of lines Control Percent A file is considered to have a "high" or "very
submitted into files high" McCabe score if the Modified cyclomatic
with "high" or complexity of the most complex
"very high" function/method is above 20. The percentage
McCabe of lines submitted to files with "high" or "very
classifications high" McCabe scores is computed by

determining the proportion of lines produced
by a developer during a release that modified
those files. [112]

Release inde Control Categorical EBach.file observation has dummy vatiables
indicating which of the 8 development
windows the observation was made for.

Login Panel Categorical Each developer login is used as a dummy
variable. This variable is used in fixed-effects
panel-data models.

Percent of lines Independent Percent Determined by finding the proportion of lines
submitted to core Variable produced that were submitted, to files given the
files architectutal complexity classification of "core"'

usingthe transitive, closue based techniques
developed by MacCormack, Baldwin, and
Rusak{[8, 9]

8.3 Regression Models

The results for regressions predicting the productivity of an individual during a release window are shown

in Table 16, Table 17, and Table 18. Note that while each of these regressions contained dummy

variables for the release and the individual, these dummies were omitted from tables.

Table 16 shows results for regressions in which the productivity of individuals implementing features and

doing other non-bug tasks is predicted. (Each model contained the lines produced to fix bugs as a

control.) Developers are much more productive when implementing features and working in new (rather

than legacy) files. They are less productive when implementing features and working in files with high
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McCabe cyclomatic complexity. After all controls are included in the model, developers are also found to

be less productive when developing features and working in core files. This result is significant at the 5%

level.

Table 17 shows results for regression in which the productivity of individuals correcting defects during a

release is predicted. (Each model contained the lines produced for feature work & other non-bug related

tasks as a control.) Developers are shown to be much more productive when implementing bug fixes if

they are working in new (rather than legacy files). Developers with more experience (those with longer

tenures at the firm) are more productive when fixing bugs than less experienced developers. The ability

to effectively fix bugs appears to grow with experience more than feature-development productivity.

Developers are also found to be much less productive when fixing bugs in the core than when fixing bugs

elsewhere. This result is significant at the 0.1% level. Working in the core appears to have a stronger

negative impact on the productivity of those fixing bugs than those implementing features.

Table 18 shows results for regressions in which total developer productivity (features and bug-fixes

combined) during a release is predicted. Employees with more years of experience were more productive.

While this is not surprising, it is interesting to note that the strength of the effect grew as other controls

were added, suggesting that as employees gain experience, they are moved into more complex regions of

the codebase, work more on legacy code, or work on harder bug fixes, thereby suppressing the

productivity gains they would have if left in more approachable regions of the codebase. When

developers work in new files (those less than 2 years old) they are much more productive. This suggests

that new feature development is easier than maintaining legacy code. As might be expected, developers

are much less productive when they are working on bug fixes than when they are implementing features.

Surprisingly, McCabe cyclomatic complexity had no statistically significant impact on overall developer

productivity, however.

Note that our second proposition holds. During time periods in which an individual worked in core files,

the number of lines of code they produced declined. Architectural complexity has a significant negative

impact on a developer's overall productivity. This result is significant at the 1% level.

123



Table 16: Predicting LOC Produced per Developer to Implement Features For One Release (Neg Binomial Panel Data Model)
Parameter Model 1: Model 2: Model 3: Model 4: all Model 5: Model 6:

developer type of work cyclomatic controls architectural combined
attributes complexity complexity

Lines for bug fixes -7.12E-05 -6.84E-05 -0.00005961 -6.74E-05 -0.00007681 . -7.84E-05
Log(years employed) 2.80E-01 4.93E-01 4.84E-01
Is manager? -2.83E-01 -2.52E-01 -2.93E-01
Pct lines in new files 1.80E+00 * 1.70E+00 * 1.71E+00 *
Pct lines high cyclomatic -1.16601056 *** -6.48E-01 . -6.13E-01
Pct lines in core -0.61094326 . -6.19E-01 *

Residual Deviance 560.7696 558.4638 560.5962 558.324 560.7079 558.1296
Degrees of Freedom 290 291 291 288 291 287
AIC 8170.656 8135.143 8162.143 8136.784 8166.867 8135.753
Theta 0.8512584 0.902979 0.8614868 0.910243 0.8540307 0.915163
Std-err 0.05032488 0.05380377 0.05103293 0.0543059 0.05051371 0.05464003
2 x log-lik -7792.656 -7759.143 -7786.143 -7754.784 -7790.867 -7751.753
N = 478 developer/releases
Dummy variablesfor each of 8 releases omitted. Dummy variablesfor each of 178 developers omitted.
Significance codes: .<0.1, *<0.05, **<0.01, ***<0.001



Table 17: Predicting LOC Produced per Developer to Fix Defects For One Release (Neg Binomial Panel Data Model)
Parameter Model 1: Model 2: Model 3: Model 4: all Model 5: Model 6:

developer type of work cyclomatic controls architectural combined
attributes complexity complexity

Lines for features & tasks -0.00002894 . -0.00003436 * -0.00002287 -0.00003286 . -0.00003183 . -0.00003869 *

Log(years employed) 0.41418368 * 0.47664084 ** 0.51248987 **

Is manager? -0.00925084 0.00234582 -0.05832787
Pct lines in new files 0.21861235 0.31967026 * 0.35717162 *

Pct lines high cyclomatic 0.33677149 . 0.44466236 * 0.49647843 **

Pct lines in core -0.48544331 ** -0.56740321 *
Residual Deviance 509.5084 509.5916 509.5686 509.208 509.4193 508.8542
Degrees of Freedom 290 291 291 288 291 287
AIC 7934.951 7935.576 7934.91 7931.536 7930.616 7923.786
Theta 2.916188 2.901444 2.905165 2.957875 2.929278 3.013898
Std-err 0.1808552 0.1798761 0.1801246 0.183591 0.1817136 0.1872798
2 x log-lik -7556.951 -7559.576 -7558.91 -7549.536 -7554.616 -7539.786
N = 478 developer/releases
Dummy variables for each of 8 releases omitted Dummy variables for each of 178 developers omitted.
Signficance codes: .<0.1, *<0.05, **<0.01, ***<0.001



Table 18: Predicting LOC Produced per Developer For One Release. (Neg Binomial Panel Data Model)
Parameter Model 1: Model 2: Model 3: Model 4: all Model 5: Model 6:

developer type of work cyclomatic controls architectural combined
attributes complexity complexity

Log(years employed) 0.233711 0.32335 0.336831 *

Is manager? -0.12336 -0.0397 -0.081573
Pct lines in new files 0.524365 *** 0.56379 *** 0.578597 ***
Pct lines for bugs -1.075852 *** -1.08704 *** -1.076668
Pct lines high cyclomatic -0.312413 . 0.14775 0.171612
Pct lines in core -0.417167 ** -0.399158 **

Residual Deviance 500.67 495.95 500.63 495.81 500.51 495.6
Degrees of Freedom 291 291 292 288 292 287
AIC 8752.2 8624.5 8749.3 8625.3 8745.8 8619.4
Theta 3.521 4.51 3.527 4.557 3.551 4.628
Std-err 0.218 0.283 0.219 0.286 0.22 0.29
2 x log-lik -8376.187 -8248.529 -8375.327 -8243.285 -8371.818 -8235.376
N = 478 developer!releases

Dummy variables for each of 8 releases omitted. Dummy variables for each of 178 developers omitted.

Significance codes: .<0.1, *<0.05, **<0.01, ***<0.001



8.4 Interpretation ofResults

Expected Developer Productivity Given
Different Fraction of Activity in Core Files
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Figure 44: Developer Productivity and Architectural Complexity

Three sets of simulations were run to determine the response of the outcome variables (the number of lines

that the typical developer would produce during a release) to changes in a developer's percentage of activity in

the core. In these simulations, most control variables were set to their mean values. The "typical" developer

was selected by choosing the individual owning the median-valued person-specific dummy variable
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coefficient. Managerial status was set tofalse. Length of employment was set to the mean value of 5.1 years.

The percent of lines contributed by this prototypical developer to new files (those under 2 years of age) was

set to 44%. The percent of lines contributed to files with high McCabe cyclomatic complexity (with scores

above 20) was set to 38%.

A simulation was run to predict the expected productivity that would be achieved if 100% of a developer's

effort could be dedicated to implementing new features or doing other non-bug related tasks and no bug-

fixing were necessary. This simulation used the full version of the regression model shown in Table 16. (In

addition to setting controls to the values just described, the control variable linesfor bugfixes was set to 0.) The

blue line shown in Figure 44 shows the result of varying the percent of lines submitted to core files on feature

productivity for this hypothetical (and blessed) individual. All else being equal, the developer working only

on features in the periphery would produce 10655 lines of changes during a release. This same individual

would only produce 6083 lines for features when positioned in the core.

A second simulation was run to predict the expected productivity that would be achieved if a developer was

forced to dedicate 100% of his effort to fixing bugs. This simulation used the full version of the regression

model shown in Table 17. (In addition to setting controls to the values previously described, the control

variable linesforfeatures and tasks was set to 0.) The red line in Figure 44 shows the response of bug-fix

productivity when the percent of lines submitted to core is varied. All else being equal, if our unlucky

developer working only on bug fixes is in the periphery, 2815 lines of changes would be produced. This same

individual would produce only 1567 lines if positioned in the core.

Our third (and final) simulation was run to predict the expected productivity that would be achieved if a

developer spent the typical proportion of time split between feature work and bug fixes. This simulation

used the full version of the regression model shown in Table 18. (In addition to setting controls to the values

previously described, the control variable pct linesfor bugs was set to the mean value of 52%.) The green line in

Figure 44 shows the impact of varying the percent of lines submitted to core files on overall productivity. All
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else being equal, the typical developer working in the periphery will produce 5359 lines of changes during a

release while this same individual would only produce 3594 lines if positioned in the core.

Our results suggest that the effect that architectural complexity has on developer productivity is quite strong.

All else being equal, architectural complexity accounts for a near halving of the lines of code that can be

produced by an individual in any given release as one moves from the periphery to the core. At Iron Bridge,

approximately 70% of lines produced go into core files. Based on the contents of Figure 44, one might

speculate that a refactoring that shank the core such that only 50% of average developer's lines produced

went into core files would yield a productivity increase of 10%. In addition, one should remember that "all

else" is not actually equal. The strong relationship between defects and complexity found in the previous

chapter tells us that developers in the periphery will spend more time than average developing features on the

"blue curve" in Figure 44 while developers in the core will spend more time on the "red curve" contending

with bugs. The productivity loss that results from moving form the periphery to the core may therefore be

substantially greater than 5 0%. If a refactoring effort successfully shrank the core it would move the average

reduce the effort the average developer dedicates to development in the core (moving them further towards

the left on the green line) and reduce the number of bugs a developer had to contend with (increasing the

amount of time spent on the blue curve rather than the red curve). The combined effect could lead to

significant productivity gains.
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Table 19: Predicted Number of Lines Produced by Average Developer at Various Architectural
Complexity Levels if Only Implementing Features or Doing Other Non-Bug Related Tasks

Percent of lines Expected number Standard CI lower bound CI upper bound
submitted to core of lines produced deviation (2.5%) (97.5%)
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Table 20: Predicted Number of Lines Produced by Average Developer at Various Architectural
Complexity Levels if Only Fixing Bugs

Percent of lines Expected number Standard CI lower bound CI upper bound
submitted to core of lines produced deviation (2.5%) (97.5%)
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Table 21: Predicted Number of Lines Produced by Average
Complexity Levels

Developer at Various Architectural

Percent of lines Expected number Standard CI lower bound CI upper bound
submitted to core of lines produced deviation (2.5%) (97.5%)
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9 Result 3: Link Between Architectural Complexity and Staff
Turnover

In our third analysis we explore the proposition that developers working in architecturally complex files have

a greater likelihood of leaving the firm (either voluntarily or involuntarily). We explore the relationship

between the fraction of lines of code an individual contributes to "core" files (relative to peers) and whether

that person left the firm during the 8 release windows studied or during the subsequent 4 years. In these

models we control for a variety of factors, each of which could be considered an alternative explanation for

why a developer might have left the firm. Controls tested include a developer's prior length of employment

with the firm, managerial status, fraction of activity working in new (rather than legacy) code, faction of

activity spent fixing bugs, and fraction of activity working in files with high McCabe cyclomatic complexity.

The goal of these models is to determine if architectural complexity has a significant impact on staff turnover,

even when weighed against these other viable explanations for attrition.

9.1 Descriptive Statistics on Developer Turnover

The sample of software developers used to explore turnover included 108 people who wrote code in the

C++ portion of Iron Bridge's codebase during the 8 releases studied. Each person appears in the dataset

only once. In order to be included in the sample, a developer must have contributed to the product for at

least one of those 8 releases. The sample included developers who were already employed at the beginning of

the window and people who joined the firm at some point during the eight development periods under study.

Of the 108 developers in the sample, 62 were present during the first release while the rest joined later.

Developer-specific data from multiple releases was pooled. Developers were then divided into groups of

stayers and leavers. Stayers were those who remained employed for up to 4 years beyond the last release

measured. Leavers were those who left the firm (either voluntarily or involuntarily) during the 8 development

windows or during the subsequent 4 years. There were 91 stayers and 17 leavers in the sample.
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Table 22: Comparing the Population of Stayers and Leavers
Standard

Mean Median deviation

stay leave stay leave stay leave

Years employed (window start) 3.88 2.68 1.92 0.92 3.90 3.59
Lines produced per release 4114 2962 3343 2284 2630 2224

Percent lines to fix bugs 43.1% 48.7% 38.4% 42.2% 22.5% 21.3%
Percent lines in new files 47.8% 45.1% 44.3% 41.3% 23.1% 25.6%

Percent lines in high McCabe files 35.4% 35.1% 35.6% 34.0% 19.2% 19.6%

Percent lines in core files 71.1% 87.3% 80.1% 93.8% 27.4% 17.4%

Years employed rank 51.1% 42.4% 52.8% 41.7% 30.0% 27.1%

Lines produced per release rank 52.6% 39.1% 52.8% 36.1% 28.8% 28.3%
Bug fraction rank 49.2% 57.3% 49.1% 55.6% 29.2% 27.7%

New file fraction rank 51.1% 46.9% 51.9% 43.5% 28.6% 31.5%

High McCabe rank 50.5% 50.1% 50.9% 47.2% 29.1% 29.6%

Core file fraction rank 47.7% 65.2% 45.4% 71.3% 29.3% 23.0%

Stay: N=91, Leave: N=17

Table 22 shows differences between these two populations. Note that those who stayed had been employed

for longer. The mean stayer had been employed for 3.88 years prior to her first sampled release cycle. The

mean leaver had only been employed for 2.7 years. The mean stayer produced more than 4000 lines of code

per release on average, while the mean leaver produced less than 3000. Stayers were slightly more likely to

work on features rather than bug fixes, work in new rather than legacy code, and did not spend as much time

working in "core" files.

9.2 Modeling Architectural Complexity and Staff Turnover

Our third proposition is that developers working in regions of the codebase with higher levels of architectural

complexity will have higher levels of turnover. In order to analyze the determinants of developer turnover,

we constructed a set of statistical models using a Boolean dependent variable indicating whether the

developer was a stayer or a leaver.
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A variety of controls were included for each individual including an indicator of whether that person was ever

a manager during the 8 releases studied. People were also ranked based on their length of employment, the

number of lines they produced per release cycle, the fraction of their activity that went into fixing bugs, the

fraction of their activity that went into developing new files, and the faction of their activity in files with high

McCabe cyclomatic complexity. 13 Rankings between developers were used in this analysis (rather than raw

percentages) because we are testing relative propensity to leave the firm (vs. absolute productivity.)

Each control used in our models offers an alternative explanation for why a person might stay or leave the

firm (both voluntarily or involuntarily). Employees with longer tenures should be more likely to stay, both

because they have already demonstrated a desire to stay with the firm and because younger individuals tend to

be more mobile. Managers should be more likely to stay for similar reasons. Individuals who are more

productive should be more likely to stay for a variety of reasons if the culture rewards productivity.

Individuals fixing bugs may feel that their jobs are less rewarding. Individuals working on new features (more

likely in new files) may feel more rewarded than those working to maintain legacy functionality (more likely in

older files). Finally, individuals working in files with high McCabe cyclomatic complexity may leave because

they do not find it rewarding to work in code that is more fragile or error prone.

Each developer in the sample was given a ranking based on the fraction of their code that went into core

files. This ranking was used as the independent variable under study. Logistic regressions were used here due

to the binary nature of the dependent variable. Variables used in those models are presented in Table 23.

13 Control variables representing the proportion of lines submitted to files with "high" direct fan-in and
direct-fan out were not included due to the fact that they are highly correlated with visibility scores and
because the extreme levels of skew in their distributions (the distribution of fan-in scores fit a power-law
distribution for instance) make it difficult to obtain or interpret results. Due to the highly skewed nature of
the data, the sample of files with "high" direct visibility scores is insufficiently small.
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Table 23: Variables Included in Statistical Model

Was developer Control Boolean Boolean variable indicating whether a developer
ever a manager? was a manager at any point in the 8 development

windows under observation.

Lines produced Control Rank The percentile rank of a developer's total number
rank of lines produced divided by the number of

releases in which they were observed.

Bug fraction rank Control Rak The percendile rank of a developer's fraction of
lines submitted to f, bugs oer all devlopment
windows in which they were obsered,

New file fraction Control Rank The percentile rank of a developer's fraction of
rank lines submitted into "new" files over all the

releases in which they were observed. A file is
considered to be a "new file" if it is less than two
years old. File age is computed by subtracting
the date of the file's first change from the release
date. The percentage of lines submitted to new
files is computed by determining the proportion
of lines produced by a developer during a release
that modified new files.

High McCabe rank Control Rank The perc'ei rank of a developers rction of
lines suite to mOodify files connn any

fctions/aetods with3Modified Cyclomatic
Complexit sepes aove 201 ove al eeses in

whcteyee observed [12

Core fraction rank Independent Rank The percentile rank of a developer's proportion
Variable of lines submitted to modify files given the

architectural complexity classification of "core"
using the transitive closure based techniques
developed by MacCormack, Baldwin, and Rusnak
over all the releases in which they were observed.
[8, 9]
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9.3 Regression Models

Regression results for models predicting staff turnover are shown in Table 24. Developer productivity (lines

of code produced per unit time) was negatively associated with turnover and was significant at the 10% level.

More productive developers were more likely to remain with the firm. Whether an employee was a manager

was almost statistically significant, with a P value of 11.06%, suggesting that a slightly larger sample size might

lead us to conclude that managerial status also decreases turnover. No other variable had a P value below

50%. Although most controls in the model were not significant predictors all pointed in the expected

direction.

Note that our third proposition holds. Developers working in more architecturally complex regions of the

code (those files considered "core") were much more likely to leave the firm (voluntarily or involuntarily).

The coefficient of interest became stronger rather than weaker as controls were added. (Statistical

significance improved as well, with a P value of 1.35% in the full model.) Of all variables included in these

models, architectural complexity had the strongest impact on turnover. Although the main set of models

uses ranks in calculations, similarly significant results are obtained by running regressions on an alternative set

of models using raw percentages rather than ranks as predictors (shown in Table 25).
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Table 24: Predicting Turnover Among Developers Based on Rankings (Logistic Model)
Parameter Model 1: Model 2: Model Model 4: Model 5: Model 6: Model

developer developer 3: type cyclomatic all architectural 7: full
attributes productivity of work complexity controls complexity

Years employed rank -0.5926 -0.8768 -0.7582
Is manager? -0.8718 -1.2221 -1.5216
Lines produced per release rank -1.6825 . -1.7528 -2.2323
Fraction work to fix bugs rank 0.9146 0.6502 0.2045

Fraction work in new file rank -0.2214 -0.4287 -0.8333
Fraction work high cyclomatic rank -0.0504 0.0402 -0.7483
Fraction work in core rank 2.2519 * 2.9558 *

Residual Deviance 91.541 90.851 92.843 94.032 86.171 88.586 78.952
Degrees of Freedom 105 106 105 106 101 106 100
AIC 97.541 94.851 98.843 98.032 100.17 92.586 94.952

N = 108 software developers

Significance codes: .<0.1, *<0.05, **<0.01, ***<0.001



Table 25: Predicting Turnover Among Developers (Logistic Model)
Parameter Model 1: Model 2: Model Model 4: Model 5: Model 6: Model

developer developer 3: type cyclomatic all architectural 7: full
attributes productivity of work complexity controls complexity

Years employed -0.0535 -0.0784 -0.0786

Is manager? -0.8123 -1.0545 -1.1398

Lines produced per release -0.0002 . -0.0002 -0.0003

Fraction of lines to fix bugs 1.0526 0.6694 0.0579

Fraction of lines in new files -0.1638 -0.6652 -1.3219

Fraction lines in high McCabe files -0.0954 -0.2562 -1.4194

Fraction of lines in core files 3.5440 * 4.1114 *

Residual Deviance 91.525 90.884 93.112 94.03 86.656 87.181 78.632

Degrees of Freedom 105 106 105 106 101 106 100

AIC 97.525 94.884 99.112 98.03 100.66 91.181 94.632

N = 108 software developers

Significance codes: .<0.1, *<0.05, **<0.01, ***<0.001



9.4 Interpretation of Results

Two sets of simulations were run to determine the expected probability that a developer would leave the

firm (voluntarily or involuntarily) as a result of the complexity of the code they are working in. The first

simulation employed the full version rank-based model shown in Table 24. Control variables for all ranks

were simply set to the median, or 0.5. The second simulation employed the full version of the turnover

model that used percentages rather than percentile ranks (shown in Table 25). In this second simulation,

control variables were set to their means. The number of years a developer was employed (prior to their

first release in the window) was set to 3.7 years. Linesproducedper release was set to 3932. The percentage of

lines submitted tofix bugs was set to 44%. The percentage of lines submitted into new files (those younger than 2

years old) was set to 47%. The percent of lines submitted to high McCabe files was set to 35%. Managerial

status was set tofalse in both simulation runs. The response of the probability of leaving variable to changes

in the architectural complexity of the code being worked on was determined by running simulations for

both relative and absolute levels of architectural complexity.

Table 26 shows the impact of relative rank on the probability of turnover. The developer with the

smallest fraction of lines in the core had a 5% chance of leaving the firm. The developer with the largest

fraction has a 44% chance. Moving from the 25th to the 75th percentile more than quadrupled the

probability of leaving. Table 27 looks at the probability of turnover in absolute rather than relative terms.

A developer working entirely in the periphery has a 2% chance of leaving the firm, while a developer

working entirely in the core has a 31% chance of leaving the fimn.



Table 26: Predicted Probability of Leaving the Firm For Developers Based On
Their Relative Amount of Work in Core

Percentile Expected Standard CI lower CI upper
rank for probability of deviation bound (2.5%) bound

fraction of leaving (97.5%)
work in core

0th 0.0503 0.0418 0.0079 0.1625

10th 0.0621 0.0433 0.0134 0.1757

20th 0.0772 0.0444 0.0215 0.1914

30th 0.0971 0.0455 0.0343 0.2090

40th 0.1220 0.0464 0.0526 0.2324

50th 0.1545 0.0487 0.0776 0.2660

60th 0.1953 0.0542 0.1056 0.3164

70th 0.2450 0.0661 0.1340 0.3903

80th 0.3037 0.0848 0.1575 0.4863

90th 0.3693 0.1084 0.1792 0.5962

100th 0.4376 0.1325 0.1965 0.7022

Table 27: Predicted Probability of Leaving the Firm at Various Architectural
Complexity Levels
Percentage of Expected Standard CI lower CI upper

lines probability of deviation bound (2.5%) bound
contributed leaving (97.5%)

to core

0% 0.0219 0.0461 0.0003 0.1421

10% 0.0262 0.0471 0.0006 0.1525

20% 0.0320 0.0472 0.0013 0.1647

30% 0.0398 0.0481 0.0029 0.1733

40% 0.0505 0.0484 0.0060 0.1823

50% 0.0660 0.0493 0.0124 0.1967

60% 0.0887 0.0498 0.0254 0.2148

70% 0.1211 0.0506 0.0476 0.2426

80% 0.1671 0.0533 0.0824 0.2888

90% 0.2300 0.0652 0.1218 0.3743

100% 0.3108 0.0922 0.1530 0.5100
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The link between architectural complexity and turnover was surprisingly strong. A variety of plausible

controls were included in this analysis, each representing a sound alternative hypothesis for why a

developer might leave the fin. None yielded a stronger effect on developer turnover than architectural

complexity.
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10 Discussion & Conclusions

Software systems today can be composed of millions of entities (such as functions, classes, methods, data

structures, etc.) that are connected in countless ways. Designing and maintaining these systems is hard;

keeping all of the complexity in the system under control is of the utmost importance. When complexity

causes different elements of a system to interact in unanticipated ways, or when parts of a system are so

complex that they move beyond the bounds of human cognitive capacities, a host of interconnected

problems begin to occur. When we lose control of complexity in a system's design, it can lead to project

failure, business failure, and/or man-made disaster. Even systems of high quality with a sustainable level

of overall complexity may have some sub-systems and cross-cutting concerns that are unmanageable.

In order to control complexity in large systems, architects often employ certain well-known patterns in

their designs to keep architecturalcomplexiy in check: hierarchies, modules, and layering schemes, among

others. When carefully applied, these patterns can aid developer comprehension and enable

independence of action. They can also endow systems with a variety of beneficial properties including

reliability, evolvability, scalability, and flexibility, just to name a few.

In this research we set out to explore the costs that architectural complexity within a product imposes on

the firm that develops and maintains it. A study was conducted at Iron Bridge Software, Inc., the

developer of a mature commercial software product under active development. Measures of architectural

complexity were taken for source-code files in 8 successive releases of their software. In order to

operationalize the notion of architectural complexity, we used procedures and metrics devised by

MacCormack, Baldwin, and Rusnak [8, 9] Three important cost drivers were explored: defect density,

software developer productivity, and development staff turnover. To explore the relationship between

each of these three cost drivers and architectural complexity within the codebase, three regression-based

analyses were conducted.

The primary findings of this study were that within Iron Bridge's codebase and development

organization:
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" Architecturally complex source code files have a much higher defect density. The most complex

code was found to have triple the defect density of the least complex code.

* Architectural complexity impairs the productivity of software engineers working with it. If a

hypothetical group of engineers working in the least architecturally complex regions of the

codebase were to be moved into the most complex regions, their productivity would decline

(conservatively) by 50%.

* Architectural complexity causes staff turnover. Software engineers working in the most complex

regions of the code had a probability of leaving the firm that was ten times greater than their

peers working in least architecturally complex code.

10.1 Contributions to Academic Literature

This dissertation makes a number of contributions to academic literature in the areas of system design,

software design, engineering management, and complexity theory. While some previous studies have

explored the impact of network-based metrics on defect density [158], none have explored the impact of

network based complexity metrics on defects in a commercially produced and mature software system

over multiple releases. We are aware of no studies that have systematically looked at the relationship

between a system's architecture and the productivity of technical professionals that work on different

parts within that structure. We are also unaware of any past studies exploring the link between a system's

architecture and staff turnover. We therefore believe that this study makes a number of novel

contributions to the academic literature.

This work empirically demonstrated that architectural complexity is an important driver of defects. This

result was not entirely unexpected. It was unexpected, however, that MacCormack's architectural

complexity metric would predict defects as well as (if not somewhat better than) the widely accepted

McCabe cyclomatic complexity metric. Most traditional software complexity metrics (such as McCabe's)

are reductionist in nature. They capture properties of individual software components considered in

isolation while ignoring the architectural patterns that link them. Architectural complexity, on the other

hand, is a holistic concept that largely ignores the contents of individual files and focuses only on the
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patterns binding the parts to the whole. For this reason, architectural complexity may capture a

fundamentally different concept of quality that is equally important to more traditional measures.

While theoretical and descriptive work done over many decades has led us to implicitly trust the notion

that the architecture of a complex system should influence productivity of engineers working within it,

this work is the first to establish the link in an empirical setting and the first to provide quantitative

estimates for the strength of that relationship. In order to establish this link we used a fixed effects panel-

data approach to look at productivity differences within the same individual across multiple time periods.

The relationship that was found was statistically significant and quite strong. We were able to estimate

the effect of architectural complexity in the code that a developer worked in on overall productivity,

productivity while implementing product enhancements, and productivity while fixing defects.

This work is the first to explore the influence of architecture on technical staff turnover. We had no idea

if a relationship between architectural complexity and staff turnover could be established. The fact that

the impact of architectural complexity was found not only to be substantial and statistically significant,

but also to be of greater importance than a developer's tenure, productivity, fraction of effort in new (vs.

legacy) code, fraction of effort working on bugs, and fraction of effort working in files with high McCabe

complexity was very surprising. It should be noted that this analysis was performed after we realized the

strength of the effect architectural complexity had on both defect density and individual productivity. The

rationale for exploring the link between complexity and turnover rested on the premise that developers in

architecturally complex code likely had other problems stemming from (or causing) their decreased

productivity and higher defect-introduction rate. They might also have more trouble making reliable

estimates, more trouble delivering on schedule, more failed attempts to solve problems, more

unanticipated side effects, more sleepless nights, more anxiety, and more stress. Exacerbating this

situation is the fact that architectural complexity is not directly observable. Architecturally complex code

might appear well constructed and appropriately commented upon isolated inspection. Appreciating the

true reason that such code may have too many defects or produce too many side effects might require a

person to mentally traverse indirect links to discover cyclical dependency chains that span the organization.

This task might be impossible given human cognitive constraints. As a result, managers and peers might
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evaluate developers in architecturally complex regions of a large system more harshly than their abilities

and contributions actually warrant. The hypothesis that all of these interconnected factors would cause

detectably higher rates of staff turnover turned out to be correct. While turnover can be healthy for an

organization, it is hard to see turnover that results from architectural complexity as anything other than a

negative. Ultimately, some new developer will be placed in the same position as the last while the root-

cause may go unaddressed.

A surprising negative result found in this study was that no statistically significant relationship between

McCabe complexity and development staff productivity or turnover could be established. While it is

possible that a different measurement or analysis approach might have establish this link, it is also

possible that architectural complexity and component-centric measures of complexity behave in different

ways, and therefore impact software engineers differently. Architectural complexity can slow progress by

causing rework, subtle side effects, and deadlock across organizational boundaries in ways that

component-specific complexity does not. Component-complexity can be directly perceived, is contained,

can be avoided, and can be corrected by a single engineer acting unilaterally. Architectural complexity, on

the other hand, is invisible, results from dependencies that span the system, cannot be avoided, and

requires coordinated action across organizational boundaries to mitigate. For these reasons, it is entirely

possible that architectural complexity truly has a much stronger impact on productivity, morale, and staff

turnover. Future work should be done to explore this possibility.

This work provides support for the validity and utility of the MacCormack, Baldwin, and Rusnak

approach. The MacCormack approach provides a repeatable means of extracting architectures from

software and a quantifiable means of measuring complexity within that software design. Much of the

prior work connecting these architectural metrics to outcome variables was qualitative or descriptive,

however. By using the MacCormack approach to measure complexity on a large scale in a commercial

setting and then relating that complexity to quantities of obvious managerial interest, this dissertation

lends support to the validity and practical utility of MacCormack's methods.

Finally, this work confirms many of the intuitive beliefs held within the system design and design

structure matrix community, but is the first to offer empirical support for some of those beliefs. This
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work also reemphasizes the importance of hierarchy and modularity as high-level design principles by

demonstrating how costly deviations from them can be.

10.2 Contributions to Managerial Practice:

A number of insights gained over the course of this research have the potential to contribute to

managerial practice. By conducting a case study within a representative commercially successful software

firm, exploring a large codebase that is both mature and growing rapidly, and studying large community

of paid software developers in all career stages, we greatly increase the possibility that results gleaned here

will be applicable in other firms or organizations responsible for developing and maintaining software

codebases or other complex systems.

The first contribution of this work is simply to demonstrate how costly architectural complexity can

actually be and to suggest an approach to computing the financial value of successful redesign efforts.

We found that differences in architectural complexity could account for 50% drops in productivity, three-

fold increases in defect density, and order-of-magnitude increases in staff turnover. This is not the whole

story however. When considering the cost of additional defects and lower productivity in combination,

the picture becomes more dramatic because the 50% productivity loss we calculated assumes that a

developer's ratio of feature development to bug-correction work is held constant as he moves from the

periphery to the core. Because complex code has more bugs, and because bug fixes requires much more

time (per line of code) to implement than comparably sized features, productivity (as measured by LOC

produced per unit time) will slip further than 50%. One should also consider the fact that defect

correction is a necessary but non-value-add activity. The value that a customer derives from a developer's

productive output does not include work done to fix bugs (unless those bugs were released into the

market place.) This suggests a possible alternative productivity measure that excludes defect-correction

LOC written from consideration altogether, further amplifying the effect. When considering the cost of

increased staff turnover among developers in architecturally complex code, one must consider the cost of

recruiting and training replacements and the cost of bugs that rookie developers will introduce. Such a

calculation must also account for the fact that developers in the core are likely the hardest to replace
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because of the need for higher skill levels and steeper learning curves. Using the techniques developed in

this thesis, it should be possible for firms to estimate the financial cost of their complexity by assigning a

monetary value to the decreased productivity, increased defect density, and increased turnover it causes.

As a result, it should be possible for firms to more accurately estimate the potential dollar-value of

refactoring efforts aimed at improving architecture. While we have not gone through the exercise of

converting the above factors into dollar figure estimates of cost, we are now quite convinced that

refactoring efforts that successfully reduce architectural complexity have the potential to create enormous

financial value for the fimn.

A second contribution of this work to managerial practice is to point toward a means of managing

refactoring efforts. By utilizing tooling similar to the programming interface, database infrastructure,

mathematical analysis code, and DSM software that we created for this work (shown in Figure 32),

managers would have a means of tracking progress towards complexity reduction. They would have the

ability to visualize the structure of code as it changed and could track resulting cost reductions by

monitoring the movement of KPIs in subsequent time periods. These managers would feel more

confident when moving forward with larger refactoring efforts because they would have a key feedback

mechanism allowing their organization to move, learn, and adjust as needed. Without the ability monitor

architecture and the cost it imposes, managing a system overhaul is a much more uncertain proposition,

often leading to "death marches" and costly failures.

This thesis also has other practical applications. It demonstrates that the MacCormack, Baldwin, and

Rusnak metrics can be added to the list of metrics that successfully identify defect-prone files or predict

future defects. By combining architectural metrics with other previously validated component-based

defect predictors, we should gain accuracy. Better predictive capabilities give organizations better ability

to proactively clean problematic areas of their codebases and appropriately allocate testing resources.

This work also helps address some of the problems with software cost and schedule estimation models.

Kemerer said that the Achilles heel of estimation models is their lack of a sound underlying theory of

developer productivity. [159] Schedule and cost models base their estimates for required effort on LOC,

function point, or other counts that capture code volume but ignore the interdependence between
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elements in a system resulting from its architectural or structural properties. Because this research has

demonstrated that architectural complexity is a very strong driver of an individual's productivity, cost

estimation techniques that rely on productivity estimates might improve if measures of architectural

complexity were taken into account.

Finally, this work suggests that a shift in mindset might be warranted in software firms that attempt to use

quality metrics and models (see [108]) derived from experiences gained in the advanced manufacturing

world. Many Lean or Six-Sigma inspired models transplanted into software settings measure bugs, bug

introduction rate, bug correction rate, and use a variety of techniques to link bugs to team or individual

performance. Unfortunately, these models often have no concept of what a bug is, what causes them,

and what can be done to reduce their frequency. In these models, "bugs" are completely disembodied

from the code or software architecture in which they rest. The implicit message underlying models that

only measure people and bugs is that people are to be blamed for bugs. While it is partially true that

people cause bugs, we believe that this research points towards a healthier mental model. We propose

that complex architecture causes bugs, impairs productivity, and thwarts understanding. We propose that

developers are in some senses its victims. By measuring software structure and architectural complexity

we can give development organizations the ability to coordinate actions and address the actual root causes

behind defects and project failures. We can better understand which projects are likely to have false-

starts, offer additional support for those working in entangled parts of the code, and give combat pay to

those attempting to refactor cross-cutting concerns. In general, an understanding of architectural

complexity and the costs that it imposes should help an organization more appropriately set expectations

and allocate resources.

10.3 Limitations of This Work

This work has a few important limitations that should be understood.

Because this dissertation has focused primarily on the cost of complexity, it must be said that complexity is

not inherently bad, even if it leads to a variety of increased costs. Managers must focus on value - benefit

minus cost - to make rational decisions. Complexity adds value. No system will be free of complexity, and
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a system with more complexity may have other benefits, such as increased performance, that offset the

costs. Even if a system is undesirably complex, it might not be worth addressing if the cost of refactoring

would be greater than the expected cost reduction. This dissertation does not consider the full spectrum

of factors that must go into a cost-benefit analysis. We also do not compute values for many benefits

modularity is known to provide, such as increased "option value" [5]. We do not consider the fact that

design modularity is sometimes incompatible with physics or other hard requirements in the problem

domain. [7] Finally, because we are only taking measurements within a successful firm that ships popular

software products, we can only report on the cost of complexity in a situation where that complexity is

controlled to an acceptable degree. In this research, we have no means of estimating the cost of

uncontrolled design complexity, which has lead to the failure of firms. [24, 59] (This firm-level data may,

however, capture the impact of isolated project failures.) This research also affords us no means of

studying the risk posed to public safety by uncontrolled complexity in technical systems during their

operation. Although we make no probabilistic estimates for complexity spiraling out of control, or for

the damage done should that occur, these possibilities should always be weighted during system design,

tipping the scales towards complexity control to some extent.

Although many steps were taken to ensure a high-degree of internal validity, a single firm study suggests

some threats to external validity. It is possible that Iron Bridge is unrepresentative and that our

conclusions therefore have limited applicability. We believe this to be unlikely. Although Iron Bridge has

some unique attributes, it is a reasonably representative large software development firm. Over the years,

Iron Bridge adopted several industry standard languages, development tools, and techniques. Its design

and project-management practices are similar to those of other large commercially oriented software

firms as well. This adoption was the result of both deliberate organizational-learning efforts and cross-

pollination due to hiring. Software professionals have migrated between Iron Bridge and other firms,

carrying their knowledge, experiences, and practices with them.

A third important point to make is that files and software developers are the units of analysis in this

study; the firm and the codebase are not. The study design employed only permitted us to evaluate the

cost of more architecturally complex vs. less architecturally complex regions within the same codebase. A
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variety of setting-specific factors, such as unique tooling, processes, and measurements would make

apples-to-apples comparisons between Iron Bridge's system and some other system very hard, even if that

were the intent of this work.

One potential barrier to broad generalizability stems from the choice of domain. An analysis of the effect

of software complexity on quality within a software architecture and the productivity of software developers

might not be generalizable to engineering systems of different sorts. This concern is real, and the reader

should understand that lessons learned here might not all be directly applicable to systems of a different

type. There are fundamental distinctions between information and physics resulting in differences

between the nature of software and electro-mechanical objects. These necessarily lead to differences

between the practice of software engineering and engineering in other domains. However, there are

enough similarities that we believe many of the results established in this work could be generalized

outside the field of software. One reason is that we are looking at how fallible and boundedly rational

designers cope with complicated and complex system designs. Large organizations made up of those

humans will face many of the same challenges and experience many of the same pitfalls no matter what

they are building. A second reason is that we are not focusing much on properties unique to software or

information. Instead, we are focusing on interconnection patterns between coupled elements that come

together to form hierarchies and modules. These common patterns are found in large systems of all types,

man-made and natural, and have been shown to relate to their ability to survive, scale, and evolve. It is

therefore reasonable to suspect that the influence of these universal properties associated with complex

system architectures will influence cost drivers in a similar manner regardless of system type.

10.4 Directions for Future Work

This work raises many interesting questions that could be explored in future work.

Due to the fact that this case study only explored the cost of complexity in a single firm, an obvious

extension would be to find other suitable firms in which to replicate the analyses presented here.

Replication could be done under similar conditions or with slight variations. For instance, because this

report presented results gleaned from a C++ codebase developed by a mature commercial firm, future
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research could look at younger firms or firms using shorter release cycles. It would also be good to

validate these results in codebases written in other languages or in other application domains.

A second extension would be to do pre- and post- analyses of refactoring efforts within a codebase such

as the one developed by Iron Bridge. While this work provides evidence that portions of a codebase with

lower complexity also have lower costs, it does not look for evidence that specific refactoring both

reduced architectural complexity and lowered costs. Investigators could work with multiple teams that

have previously conducted a refactoring to look for evidence that their effort resulted in improvements.

In so doing, we could gain confidence in, and improve, complexity and cost measures. These pre- and

post-comparisons may also allow us to determine the extent to which refactoring was worthwhile from a

financial standpoint. We could then use the tools devised over the course of this research to work with

teams initiating new redesign efforts to determine if structure-related information and past cost

information can help in their planning.

Thirdly, it should be noted that the turnover study left some questions unanswered and deserves to be

revisited in the future. While the previous discussion explored the means by which complexity could

increase turnover, an alternative explanation that may not have been adequately explored is the possibility

that the "best" developers both work in the core and have the most promising opportunities outside the

firm. If this were the case, then activity in the core would simply be a proxy for valuable engineering

competence, and therefore mobility. In order to more fully explore this alternative explanation salary

levels and performance ratings might be included in regression analysis. Future work following up on the

turnover analysis should also attempt include a larger sample of leavers by profiling more development

periods and should employ a hazard modelapproach. We find the current results linking complexity to

turnover to be very intriguing and believe further work should be done to gain additional confidence in

the surprisingly strong result that was obtained here.

Fourthly, while this work measures a variety of costs, there are many that have gone unexplored. A

valuable extension to this work would be to round out the cost analysis with a study of learning curves

and career growth patterns. It is likely that complexity in a codebase affects rookies and veterans

differently. It is possible that rookies who are slowly moved into the core thrive while rookies thrown
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into the core immediately suffer. It is also possible that rookies have a harder time diagnosing bugs in the

core than veterans do. More fully understanding the dynamics of new-hire ramp-up, migration patterns

around the codebase, the role that complexity has in performance evaluation and morale, and the

resulting impact on turnover would help round out our understanding of the dynamic interplay between

complexity in the codebase and the employees who work in it.

Another area for future work would be to use these findings and other insights gained about the cost of

complexity to improve upon the system dynamics or agent-based models that simulate the dynamics of

large projects as they unfold through time. A large body of system dynamics work has been done to look

at the dynamics of project management. [24, 27-29] These models have explored the interplay between

productivity, cost, quality, turnover, morale, and learning curves and have been used for planning on

many large programs. One limitation of these models is that they tend to treat all tasks equally. To my

knowledge none of those models have incorporated information about architecture or the cost of

architectural complexity and none have attempted to explore the relationship between the growth

patterns of a complex system and the dynamics of the development effort that produces it.

Finally, future work should investigate the link between architecture, morale, and turnover. The results

presented in this thesis demonstrating that architectural complexity can significantly increase turnover

raises a variety of questions about the underlying causal mechanism. We previously posited that high

architectural complexity might affect morale through a variety of means. We suggested that because

complexity leads to lower productivity and more defects, it also likely leads to overwork, burnout, stress,

and other things that harm morale and lead to higher voluntary turnover. On the other hand, if managers

evaluate engineers negatively as a result of lower productivity or higher defect introduction rates, then

higher involuntary turnover may result. Further investigation to explore these links between complexity,

morale, and turnover would be valuable.
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10.5 Conduding Remarks

It should be noted that the study presented in this dissertation analyzed eight old releases. Our data

therefore fails to capture the impact of recent architectural changes. In the intervening time period

between 'release 8' and today, a strategic initiative - a modulariZationprogram - was begun with the goal of

splitting Iron Bridge's traditionally monolithic codebase into a hierarchy of modular units with well

defined interfaces and explicitly declared dependencies. The database infrastructure that was constructed

so that we could conduct this study using historical releases has also been used by "Clark Kent," the

senior system architect driving Iron Bridge's overall modularization effort, to explore the structure of the

current codebase for the past few years. Clark (and now a growing group of development managers) uses

this tool to explore the codebase's dependency structure, cross-module coupling, and module interfaces.

He also uses it to identify places where design rules were being violated by exploring undeclared

dependencies and the use of non-public interfaces. In the future it may be possible to study the benefits

that Iron Bridge reaps from its significant investment in architectural improvement today.

To conclude this work we will summarize points made by "David Parker," Iron Bridge's CEO, during a

recent interview. Dave told us that Iron Bridge is taking serious steps to address complexity in software

architecture because he and other company leaders are convinced that modularization is the singe most

important thing that can be done to improve quality, improve development team productivity, make the

firm more agile, and give Iron Bridge a good future market position. He noted that teams that have

historically suffered from too much complexity have had a harder time developing code and have been

slower delivering features. He also held out the experiences of many teams that had been "broken free"

and had become much more effective as a result.

Dave says that ongoing architectural improvement is being prioritized today and will continue to receive

significant investment into Iron Bridge's foreseeable future. He plans to ensure that progress continues

in two ways. Firstly, he plans to invest more in measurement systems and metric development so that

complexity can be tracked, appropriately managed, and appropriately dealt with by teams working
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individually and collectively. Secondly, he says that development teams must explicitly prioritize some

refactoring as part of their release schedule to have a balanced budget of activities.

When asked why he believes architecture and modularity are so important, Dave spoke about a new

concept he came across in the past few years: technical debt. Dave viewed architectural problems and

complexity in Iron Bridge's code as a debt to be paid off because "if it gets too large, just like financial

debt, it starts to weigh you down." He believes that this new analogy has helped many people in the

organization better understand the importance of refactoring and making appropriate short- vs. long-term

tradeoffs in the code. Iron Bridge's leadership is convinced that architecture is very important and that

more must be done to address the cost of complexity.
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